当前位置: X-MOL 学术Phys. Rev. X › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microwave Control of the Tin-Vacancy Spin Qubit in Diamond with a Superconducting Waveguide
Physical Review X ( IF 11.6 ) Pub Date : 2024-08-27 , DOI: 10.1103/physrevx.14.031036
Ioannis Karapatzakis 1 , Jeremias Resch 1 , Marcel Schrodin 1 , Philipp Fuchs 2 , Michael Kieschnick 3 , Julia Heupel 4 , Luis Kussi 1 , Christoph Sürgers 1 , Cyril Popov 4 , Jan Meijer 3 , Christoph Becher 2 , Wolfgang Wernsdorfer 1, 1, 5 , David Hunger 1, 1, 5
Affiliation  

Group-IV color centers in diamond are promising candidates for quantum networks due to their dominant zero-phonon line and symmetry-protected optical transitions that connect to coherent spin levels. The negatively charged tin-vacancy (SnV) center possesses long electron spin lifetimes due to its large spin-orbit splitting. However, the magnetic dipole transitions required for microwave spin control are suppressed, and strain is necessary to enable these transitions. Recent work has shown spin control of strained emitters using microwave lines that suffer from Ohmic losses, restricting coherence through heating. We utilize a superconducting coplanar waveguide to measure SnV centers subjected to strain, observing substantial improvement. A detailed analysis of the SnV center electron spin Hamiltonian based on the angle-dependent splitting of the ground and excited states is performed. We demonstrate coherent spin manipulation and obtain a Hahn echo coherence time of up to T2=430μs. With dynamical decoupling, we can prolong coherence to T2=10 ms, about a sixfold improvement compared to earlier works. We also observe a nearby coupling C13 spin, which may serve as a quantum memory, thus substantiating the potential of SnV centers in diamond and demonstrates the benefit of superconducting microwave structures. Published by the American Physical Society 2024

中文翻译:


使用超导波导对金刚石中锡空位自旋量子比特的微波控制



钻石中的 IV 组色心是量子网络的有前途的候选者,因为它们具有占主导地位的零声子线和连接到相干自旋能级的对称性保护的光学跃迁。带负电荷的锡空位 (SnV) 中心由于其较大的自旋轨道分裂而具有较长的电子自旋寿命。然而,微波自旋控制所需的磁偶极子跃迁被抑制,并且需要应变才能实现这些跃迁。最近的研究表明,使用微波线对应变发射器进行自旋控制,这些发射极受到欧姆损耗,通过加热限制了相干性。我们利用超导共面波导来测量受应变的 SnV 色心,观察到实质性的改进。基于基态和激发态的角度相关分裂,对 SnV 中心电子自旋哈密顿量进行了详细分析。我们演示了相干自旋操作,并获得了高达 T2=430μs 的 Hahn 回波相干时间。通过动态解耦,我们可以将相干性延长到 T2=10 毫秒,与早期工作相比,大约提高了 6 倍。我们还观察到附近的耦合 C13 自旋,它可能用作量子存储器,从而证实了金刚石中 SnV 中心的潜力,并展示了超导微波结构的好处。 美国物理学会 2024 年出版
更新日期:2024-08-27
down
wechat
bug