Complex & Intelligent Systems ( IF 5.0 ) Pub Date : 2024-08-28 , DOI: 10.1007/s40747-024-01550-9 Zhenguo Zhang , Tianhao Ma , Yadan Zhao , Shuai Yu , Fan Zhou
In this paper, a multi-fault tolerant controller considering actuator saturation is proposed. Based on the adaptive dynamic programming(ADP) algorithm, the fault tolerant control of the reconfigurable manipulator with sensor and actuator faults are carried out. Firstly, combined with the state space expression, the nonlinear transformation of sensor fault is performed by adopting the differential homeomorphism principle. An improved cost function is constructed based on the fault estimation function obtained by the fault observer, and combined with hyperbolic tangent function to deal with input constraint problem. Then, an evaluation neural network (NN) is established and the Hamilton–Jacobi–Bellman (HJB) equation is solved by online strategy iterative algorithm. Furthermore, based on Lyapunov theorem, the stability of reconfigurable manipulator systems with multi-fault are proved. Lastly, the simulation studies are used to certify the effectiveness of the presented fault tolerant control (FTC) scheme.
中文翻译:
基于自适应动态规划的输入约束可重构机械臂多容错控制
本文提出了一种考虑执行器饱和的多容错控制器。基于自适应动态规划(ADP)算法,对传感器和执行器故障的可重构机械臂进行容错控制。首先,结合状态空间表达式,采用微分同胚原理对传感器故障进行非线性变换。基于故障观测器获得的故障估计函数构造改进的成本函数,并结合双曲正切函数处理输入约束问题。然后,建立评估神经网络(NN),并通过在线策略迭代算法求解Hamilton-Jacobi-Bellman(HJB)方程。此外,基于Lyapunov定理,证明了多故障可重构机械臂系统的稳定性。最后,仿真研究用于证明所提出的容错控制(FTC)方案的有效性。