当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Regulation of deep and shallow hole/electron trap states and charge conducting behaviors of dielectric tribo-materials for maximizing retained charges
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-08-28 , DOI: 10.1039/d4ee03008g Jian Wang , Shuyan Xu , Gui Li , Huiyuan Wu , Kaixian Li , Ai Chen , Qionghua Zhao , Shaoke Fu , Chuncai Shan , Yi Xi , Chenguo Hu
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-08-28 , DOI: 10.1039/d4ee03008g Jian Wang , Shuyan Xu , Gui Li , Huiyuan Wu , Kaixian Li , Ai Chen , Qionghua Zhao , Shaoke Fu , Chuncai Shan , Yi Xi , Chenguo Hu
Recently, ultra-fast and high-efficiency charge self-injection technology (UH-CSI) utilizing the charge excitation strategy has effectively increased the charge density of triboelectric nanogenerators (TENGs). However, the air breakdown effect caused by excessive injection charge and the charge de-trapping effect resulting from the shallow trap of the polymer leads to severe charge dissipation. Herein, we utilize the HUSCI strategy to quantify the ability of 30 conventional tribo-materials to trap and de-trap positive/negative charges and reveal that the polymer's group composition influences trap states. Specifically, the density and proportion of deep and shallow hole/electron trap states determine the storage and dissipation of injected charges. Moreover, we identify three paths for dynamic charge dissipation and propose optimizing trap distribution and constructing a charge transport and blocking layer to suppress dissipation. Finally, the modified P(VDF-TrFE) film, with reasonable doping of SiO2 and MoS2, achieves a high retained charge density of 3.88 mC m−2, and the charge dissipation rate is reduced by 50%, setting a new record for material modification. Surprisingly, the high trap state density of PVDF results in an ultra-high injected charge density of 26.2 mC m−2. This study provides a fundamental methodology for quantifying charge trapping in dielectric materials and suppressing charge de-trapping.
中文翻译:
调节介电摩擦材料的深浅空穴/电子陷阱状态和电荷传导行为,以最大化保留电荷
最近,利用电荷激发策略的超快高效电荷自注入技术(UH-CSI)有效地提高了摩擦纳米发电机(TENG)的电荷密度。然而,过量注入电荷引起的空气击穿效应和聚合物浅陷阱引起的电荷去俘获效应导致严重的电荷耗散。在此,我们利用 HUSCI 策略量化 30 种传统摩擦材料捕获和释放正/负电荷的能力,并揭示聚合物的基团组成影响捕获态。具体来说,深浅空穴/电子陷阱态的密度和比例决定了注入电荷的存储和耗散。此外,我们确定了动态电荷耗散的三种路径,并建议优化陷阱分布并构建电荷传输和阻挡层以抑制耗散。最终,改性P(VDF-TrFE)薄膜通过SiO 2和MoS 2的合理掺杂,实现了3.88 mC m −2的高保留电荷密度,且电荷耗散率降低了50%,创下了新纪录。用于材料改性。令人惊讶的是,PVDF的高陷阱态密度导致了26.2 mC m -2的超高注入电荷密度。这项研究为量化介电材料中的电荷捕获和抑制电荷去捕获提供了基本方法。
更新日期:2024-08-28
中文翻译:
调节介电摩擦材料的深浅空穴/电子陷阱状态和电荷传导行为,以最大化保留电荷
最近,利用电荷激发策略的超快高效电荷自注入技术(UH-CSI)有效地提高了摩擦纳米发电机(TENG)的电荷密度。然而,过量注入电荷引起的空气击穿效应和聚合物浅陷阱引起的电荷去俘获效应导致严重的电荷耗散。在此,我们利用 HUSCI 策略量化 30 种传统摩擦材料捕获和释放正/负电荷的能力,并揭示聚合物的基团组成影响捕获态。具体来说,深浅空穴/电子陷阱态的密度和比例决定了注入电荷的存储和耗散。此外,我们确定了动态电荷耗散的三种路径,并建议优化陷阱分布并构建电荷传输和阻挡层以抑制耗散。最终,改性P(VDF-TrFE)薄膜通过SiO 2和MoS 2的合理掺杂,实现了3.88 mC m −2的高保留电荷密度,且电荷耗散率降低了50%,创下了新纪录。用于材料改性。令人惊讶的是,PVDF的高陷阱态密度导致了26.2 mC m -2的超高注入电荷密度。这项研究为量化介电材料中的电荷捕获和抑制电荷去捕获提供了基本方法。