当前位置:
X-MOL 学术
›
Glob. Change Biol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Emergent constraints on historical and future global gross primary productivity
Global Change Biology ( IF 10.8 ) Pub Date : 2024-08-27 , DOI: 10.1111/gcb.17479 Xin Chen 1 , Tiexi Chen 1, 2, 3 , Yi Y Liu 4 , Bin He 5 , Shuci Liu 6 , Renjie Guo 7 , Han Dolman 8
Global Change Biology ( IF 10.8 ) Pub Date : 2024-08-27 , DOI: 10.1111/gcb.17479 Xin Chen 1 , Tiexi Chen 1, 2, 3 , Yi Y Liu 4 , Bin He 5 , Shuci Liu 6 , Renjie Guo 7 , Han Dolman 8
Affiliation
Terrestrial gross primary productivity (GPP) is the largest carbon flux in the global carbon cycle and plays a crucial role in terrestrial carbon sequestration. However, historical and future global GPP estimates still vary markedly. In this study, we reduced uncertainties in global GPP estimates by employing an innovative emergent constraint method on remote sensing‐based GPP datasets (RS‐GPP), using ground‐based estimates of GPP from flux towers as the observational constraint. Using this approach, the global GPP in 2001–2014 was estimated to be 126.8 ± 6.4 PgC year−1 , compared to the original RS‐GPP ensemble mean of 120.9 ± 10.6 PgC year−1 , which reduced the uncertainty range by 39.6%. Independent space‐ and time‐based (different latitudinal zones, different vegetation types, and individual year) constraints further confirmed the robustness of the global GPP estimate. Building on these insights, we extended our constraints to project global GPP estimates in 2081–2100 under various Shared Socioeconomic Pathway (SSP) scenarios: SSP126 (140.6 ± 9.3 PgC year−1 ), SSP245 (153.5 ± 13.4 PgC year−1 ), SSP370 (170.7 ± 16.9 PgC year−1 ), and SSP585 (194.1 ± 23.2 PgC year−1 ). These findings have important implications for understanding and projecting climate change, helping to develop more effective climate policies and carbon reduction strategies.
中文翻译:
对历史和未来全球总初级生产力的紧急制约因素
陆地总初级生产力 (GPP) 是全球碳循环中最大的碳通量,在陆地碳固存中起着至关重要的作用。然而,历史和未来的全球 GPP 估计值仍存在显著差异。在这项研究中,我们通过在基于遥感的 GPP 数据集 (RS-GPP) 上采用创新的紧急约束方法,使用基于地面的通量塔 GPP 估计作为观测约束,从而减少了全球 GPP 估计的不确定性。使用这种方法,2001-2014 年的全球 GPP 估计为 126.8 ± 6.4 PgC 年-1,而原始 RS-GPP 集合平均值为 120.9 ± 10.6 PgC 年-1,这减少了 39.6% 的不确定性范围。独立的基于空间和时间(不同纬度带、不同植被类型和单个年份)的约束进一步证实了全球 GPP 估计的稳健性。基于这些见解,我们扩展了约束条件,在各种共享社会经济途径 (SSP) 情景下预测 2081-2100 年的全球 GPP 估计:SSP126(140.6 ± 9.3 PgC 年-1)、SSP245(153.5 ± 13.4 PgC 年-1)、SSP370(170.7 ± 16.9 PgC 年-1)和 SSP585(194.1 ± 23.2 PgC 年-1)。这些发现对理解和预测气候变化具有重要意义,有助于制定更有效的气候政策和碳减排战略。
更新日期:2024-08-27
中文翻译:
对历史和未来全球总初级生产力的紧急制约因素
陆地总初级生产力 (GPP) 是全球碳循环中最大的碳通量,在陆地碳固存中起着至关重要的作用。然而,历史和未来的全球 GPP 估计值仍存在显著差异。在这项研究中,我们通过在基于遥感的 GPP 数据集 (RS-GPP) 上采用创新的紧急约束方法,使用基于地面的通量塔 GPP 估计作为观测约束,从而减少了全球 GPP 估计的不确定性。使用这种方法,2001-2014 年的全球 GPP 估计为 126.8 ± 6.4 PgC 年-1,而原始 RS-GPP 集合平均值为 120.9 ± 10.6 PgC 年-1,这减少了 39.6% 的不确定性范围。独立的基于空间和时间(不同纬度带、不同植被类型和单个年份)的约束进一步证实了全球 GPP 估计的稳健性。基于这些见解,我们扩展了约束条件,在各种共享社会经济途径 (SSP) 情景下预测 2081-2100 年的全球 GPP 估计:SSP126(140.6 ± 9.3 PgC 年-1)、SSP245(153.5 ± 13.4 PgC 年-1)、SSP370(170.7 ± 16.9 PgC 年-1)和 SSP585(194.1 ± 23.2 PgC 年-1)。这些发现对理解和预测气候变化具有重要意义,有助于制定更有效的气候政策和碳减排战略。