当前位置: X-MOL 学术Transportation › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A novel machine learning-based spatialized population synthesis framework
Transportation ( IF 3.5 ) Pub Date : 2024-08-27 , DOI: 10.1007/s11116-024-10534-0
Mohamed Khachman , Catherine Morency , Francesco Ciari

Synthetic populations are increasingly required in transportation demand modelling practice to feed the large-scale agent-based microsimulation platforms gaining in popularity. The quality of the synthetic population, i.e., its representativeness of the sociodemographic and the spatial distribution of the real population, is a determinant factor of the reliability of the microsimulation it feeds. While many research works focused on improving the sociodemographic accuracy of synthetic populations, the quality of their spatial distribution remained less covered. This paper suggests a new explicitly spatialized population synthesis framework. It leverages the performant Clustering Large Applications (CLARA) and Random Forest algorithms as well as rich spatial information collected as part of surveys to make accurate predictions of synthetic households’ locations at the building scale directly. In addition to preserving optimal sociodemographic accuracy and achieving realistic explicit spatialization, the new framework shows acceptable transferability thanks to CLARA’s efficiency. An explicitly spatialized synthetic population for Montreal Island is generated using the proposed clustering + classification framework. The four components of the proposed framework have generated satisfactory results with the zonal synthetic population established showing a 2.85% average relative error, the building clustering selected having a 0.48 average silhouette width, the classification model achieving a 0.79 macro-average F1 score, and 78.9% of the synthetic households being assigned to their preferred building cluster.



中文翻译:


一种新颖的基于机器学习的空间化群体合成框架



交通需求建模实践越来越需要合成群体,以满足日益流行的基于代理的大规模微仿真平台的需求。合成人口的质量,即其对社会人口统计和真实人口空间分布的代表性,是其所提供的微观模拟可靠性的决定性因素。尽管许多研究工作的重点是提高综合人口的社会人口统计准确性,但对其空间分布的质量仍然关注较少。本文提出了一种新的明确空间化的人口综合框架。它利用高性能的集群大型应用程序 (CLARA) 和随机森林算法以及作为调查的一部分收集的丰富空间信息,直接在建筑规模上准确预测合成家庭的位置。除了保持最佳的社会人口统计准确性和实现现实的显式空间化之外,由于 CLARA 的效率,新框架还显示出可接受的可转移性。使用提出的聚类+分类框架生成蒙特利尔岛的明确空间化综合人口。所提出的框架的四个组成部分产生了令人满意的结果,建立的区域综合人口显示出2.85%的平均相对误差,选择的建筑聚类具有0.48的平均轮廓宽度,分类模型实现了0.79的宏观平均F1分数和78.9被分配到其首选建筑群的综合家庭的百分比。

更新日期:2024-08-27
down
wechat
bug