当前位置:
X-MOL 学术
›
Quantum Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Hardware requirements for trapped-ion-based verifiable blind quantum computing with a measurement-only client
Quantum Science and Technology ( IF 5.6 ) Pub Date : 2024-08-27 , DOI: 10.1088/2058-9565/ad6eb2 J van Dam , G Avis , Tz B Propp , F Ferreira da Silva , J A Slater , T E Northup , S Wehner
Quantum Science and Technology ( IF 5.6 ) Pub Date : 2024-08-27 , DOI: 10.1088/2058-9565/ad6eb2 J van Dam , G Avis , Tz B Propp , F Ferreira da Silva , J A Slater , T E Northup , S Wehner
In blind quantum computing (BQC), a user with a simple client device can perform a quantum computation on a remote quantum server such that the server cannot gain knowledge about the computation. Here, we numerically investigate hardware requirements for verifiable BQC using an ion trap as server and a distant measurement-only client. While the client has no direct access to quantum-computing resources, it can remotely execute quantum programs on the server by measuring photons emitted by the trapped ion. We introduce a numerical model for trapped-ion quantum devices in NetSquid, a discrete-event simulator for quantum networks. Using this, we determine the minimal hardware requirements on a per-parameter basis to perform the verifiable BQC protocol. We benchmark these for a five-qubit linear graph state, with which any single-qubit rotation can be performed, where client and server are separated by 50 km. Current state-of-the-art ion traps satisfy the minimal requirements on a per-parameter basis, but all current imperfections combined make it impossible to perform the blind computation securely over 50 km using existing technology. Using a genetic algorithm, we determine the set of hardware parameters that minimises the total improvements required, finding directions along which to improve hardware to reach our threshold error probability that would enable experimental demonstration. In this way, we lay a path for the near-term experimental progress required to realise the implementation of verifiable BQC over a 50 km distance.
中文翻译:
使用仅测量客户端的基于捕获离子的可验证盲量子计算的硬件要求
在盲量子计算(BQC)中,具有简单客户端设备的用户可以在远程量子服务器上执行量子计算,使得服务器无法获得有关计算的知识。在这里,我们使用离子阱作为服务器和仅远程测量客户端,对可验证 BQC 的硬件要求进行数值研究。虽然客户端无法直接访问量子计算资源,但它可以通过测量捕获离子发射的光子来远程执行服务器上的量子程序。我们在 NetSquid(量子网络的离散事件模拟器)中引入了捕获离子量子器件的数值模型。利用这一点,我们确定每个参数的最低硬件要求,以执行可验证的 BQC 协议。我们针对五量子位线性图状态对它们进行基准测试,可以使用该状态执行任何单量子位旋转,其中客户端和服务器相距 50 公里。目前最先进的离子阱满足每个参数的最低要求,但目前的所有缺陷加起来使得使用现有技术不可能安全地执行 50 公里以上的盲计算。使用遗传算法,我们确定一组硬件参数,以最大限度地减少所需的总体改进,找到改进硬件的方向,以达到我们的阈值误差概率,从而实现实验演示。通过这种方式,我们为实现 50 公里距离上实施可验证的 BQC 所需的近期实验进展铺平了道路。
更新日期:2024-08-27
中文翻译:
使用仅测量客户端的基于捕获离子的可验证盲量子计算的硬件要求
在盲量子计算(BQC)中,具有简单客户端设备的用户可以在远程量子服务器上执行量子计算,使得服务器无法获得有关计算的知识。在这里,我们使用离子阱作为服务器和仅远程测量客户端,对可验证 BQC 的硬件要求进行数值研究。虽然客户端无法直接访问量子计算资源,但它可以通过测量捕获离子发射的光子来远程执行服务器上的量子程序。我们在 NetSquid(量子网络的离散事件模拟器)中引入了捕获离子量子器件的数值模型。利用这一点,我们确定每个参数的最低硬件要求,以执行可验证的 BQC 协议。我们针对五量子位线性图状态对它们进行基准测试,可以使用该状态执行任何单量子位旋转,其中客户端和服务器相距 50 公里。目前最先进的离子阱满足每个参数的最低要求,但目前的所有缺陷加起来使得使用现有技术不可能安全地执行 50 公里以上的盲计算。使用遗传算法,我们确定一组硬件参数,以最大限度地减少所需的总体改进,找到改进硬件的方向,以达到我们的阈值误差概率,从而实现实验演示。通过这种方式,我们为实现 50 公里距离上实施可验证的 BQC 所需的近期实验进展铺平了道路。