当前位置:
X-MOL 学术
›
Int. J. Numer. Anal. Methods Geomech.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Failure mechanism of fully grouted rock bolts subjected to pullout test: Insights from coupled FDM‐DEM simulation
International Journal for Numerical and Analytical Methods in Geomechanics ( IF 3.4 ) Pub Date : 2024-08-26 , DOI: 10.1002/nag.3824
Hongyan Zhao 1 , Kang Duan 1 , Yang Zheng 1 , Qiangyong Zhang 1, 2 , Longyun Zhang 1, 2 , Rihua Jiang 1 , Jinyuan Zhang 1
International Journal for Numerical and Analytical Methods in Geomechanics ( IF 3.4 ) Pub Date : 2024-08-26 , DOI: 10.1002/nag.3824
Hongyan Zhao 1 , Kang Duan 1 , Yang Zheng 1 , Qiangyong Zhang 1, 2 , Longyun Zhang 1, 2 , Rihua Jiang 1 , Jinyuan Zhang 1
Affiliation
Fully grouted rock bolts are widely used in mining, tunneling, and pit support, and thus the study of their anchorage performance is beneficial for optimizing the anchorage system design. In this study, an FDM‐DEM coupled numerical model is established to simulate the whole process of rock bolt pullout test and to investigate the failure mechanism of fully grouted rock bolts. The accuracy of the model is verified by comparison with existing laboratory test results. Virtual experiments are conducted on different models by eliminating the anchor plate, changing the layered rock strata condition, and adding bolts. The results show that the presence of an anchor plate will reduce tensile stress to restrain the rupture of surrounding rock and thus improve the strengthening effect. Due to the different bond strength and tensile strength of the soft and hard rock mediums, the layer sequence of the rock strata affects the maximum pullout force. The upper‐soft and lower‐hard composite rock strata (S‐HCR) exhibits single‐cone damage while the upper‐hard and lower‐soft composite rock strata (H‐SCR) exhibits double‐cone damage. The superposition effect of the anchor group on the stresses and displacements is the reason leading to the reduction of the maximum load‐bearing capacity of the rock bolts.
中文翻译:
经受拉拔试验的完全灌浆锚杆的失效机制:耦合 FDM-DEM 模拟的见解
全灌浆锚杆广泛应用于采矿、隧道、基坑支护等领域,对其锚固性能的研究有利于优化锚固系统设计。本研究建立FDM-DEM耦合数值模型来模拟锚杆拉拔试验的全过程,研究全灌浆锚杆的破坏机理。通过与现有实验室测试结果的比较验证了模型的准确性。通过取消锚板、改变层状岩层条件、增加螺栓等方式,对不同模型进行虚拟实验。结果表明,锚板的存在会降低拉应力,抑制围岩的破裂,从而提高加固效果。由于软、硬岩石介质的粘结强度和抗拉强度不同,岩层层序影响最大拔拔力。上软下硬复合岩层(S-HCR)表现为单锥损伤,上硬下软复合岩层(H-SCR)表现为双锥损伤。锚杆组对应力和位移的叠加效应是导致锚杆最大承载能力降低的原因。
更新日期:2024-08-26
中文翻译:
经受拉拔试验的完全灌浆锚杆的失效机制:耦合 FDM-DEM 模拟的见解
全灌浆锚杆广泛应用于采矿、隧道、基坑支护等领域,对其锚固性能的研究有利于优化锚固系统设计。本研究建立FDM-DEM耦合数值模型来模拟锚杆拉拔试验的全过程,研究全灌浆锚杆的破坏机理。通过与现有实验室测试结果的比较验证了模型的准确性。通过取消锚板、改变层状岩层条件、增加螺栓等方式,对不同模型进行虚拟实验。结果表明,锚板的存在会降低拉应力,抑制围岩的破裂,从而提高加固效果。由于软、硬岩石介质的粘结强度和抗拉强度不同,岩层层序影响最大拔拔力。上软下硬复合岩层(S-HCR)表现为单锥损伤,上硬下软复合岩层(H-SCR)表现为双锥损伤。锚杆组对应力和位移的叠加效应是导致锚杆最大承载能力降低的原因。