Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Distinct DNA conformations during forward and backward translocations through a conical nanopore
Analyst ( IF 3.6 ) Pub Date : 2024-08-27 , DOI: 10.1039/d4an01068j Fei Zheng 1 , Quan Han 2
Analyst ( IF 3.6 ) Pub Date : 2024-08-27 , DOI: 10.1039/d4an01068j Fei Zheng 1 , Quan Han 2
Affiliation
DNA conformations, which encompass the three-dimensional structures of the DNA strand, play a crucial role in genome regulation. During DNA translocation in a nanopore, various conformations occur due to interactions among force fields, the fluidic environment, and polymer features. The most common conformation is folding, where DNA moves through the nanopore in a two-strand or multi-strand manner, influencing the current signature. Factors such as hydrodynamic drag, ionic environments, and DNA length significantly affect these conformations. Notably, conical nanopores, with their asymmetrical geometry, impose unique constraints on DNA translocation. Our findings reveal that during forward translocation, from the narrow (cis) end to the wide (trans) end, DNA experiences less resistance, resulting in shorter translocation times and higher blockade currents. Conversely, backward translocation, from the wide (trans) end to the narrow (cis) end, leads to longer translocation times and more complex conformations due to increased hydrodynamic drag and geometric constraints. This study employs molecular ping-pong methods to confine DNA, further highlighting the intricate dynamics of DNA folding within nanopores. These insights enhance the understanding of DNA behavior in confined environments, contributing to advancements in nanopore-based sensing and sequencing technologies, with implications for genome regulation and biomedical applications.
中文翻译:
通过圆锥形纳米孔向前和向后易位时不同的 DNA 构象
DNA 构象包含 DNA 链的三维结构,在基因组调控中发挥着至关重要的作用。 DNA 在纳米孔中易位期间,由于力场、流体环境和聚合物特征之间的相互作用,会出现各种构象。最常见的构象是折叠,其中 DNA 以两链或多链方式穿过纳米孔,影响电流特征。水动力阻力、离子环境和 DNA 长度等因素会显着影响这些构象。值得注意的是,圆锥形纳米孔具有不对称的几何形状,对 DNA 易位施加了独特的限制。我们的研究结果表明,在正向易位过程中,从窄端(顺式)到宽端(反式),DNA 经历的阻力较小,从而导致易位时间更短和阻断电流更高。相反,从宽端(反式)到窄端(顺式)的向后易位,由于水动力阻力和几何约束的增加,会导致更长的易位时间和更复杂的构象。这项研究采用分子乒乓球方法来限制 DNA,进一步强调了纳米孔内 DNA 折叠的复杂动力学。这些见解增强了对受限环境中 DNA 行为的理解,有助于基于纳米孔的传感和测序技术的进步,并对基因组调控和生物医学应用产生影响。
更新日期:2024-08-27
中文翻译:
通过圆锥形纳米孔向前和向后易位时不同的 DNA 构象
DNA 构象包含 DNA 链的三维结构,在基因组调控中发挥着至关重要的作用。 DNA 在纳米孔中易位期间,由于力场、流体环境和聚合物特征之间的相互作用,会出现各种构象。最常见的构象是折叠,其中 DNA 以两链或多链方式穿过纳米孔,影响电流特征。水动力阻力、离子环境和 DNA 长度等因素会显着影响这些构象。值得注意的是,圆锥形纳米孔具有不对称的几何形状,对 DNA 易位施加了独特的限制。我们的研究结果表明,在正向易位过程中,从窄端(顺式)到宽端(反式),DNA 经历的阻力较小,从而导致易位时间更短和阻断电流更高。相反,从宽端(反式)到窄端(顺式)的向后易位,由于水动力阻力和几何约束的增加,会导致更长的易位时间和更复杂的构象。这项研究采用分子乒乓球方法来限制 DNA,进一步强调了纳米孔内 DNA 折叠的复杂动力学。这些见解增强了对受限环境中 DNA 行为的理解,有助于基于纳米孔的传感和测序技术的进步,并对基因组调控和生物医学应用产生影响。