npj Digital Medicine ( IF 12.4 ) Pub Date : 2024-08-26 , DOI: 10.1038/s41746-024-01220-7 Hossein Akbarialiabad 1 , Amirmohammad Pasdar 2 , Dédée F Murrell 1, 3
Digital twins, innovative virtual models synthesizing real-time biological, environmental, and lifestyle data, herald a new era in personalized medicine, particularly dermatology. These models, integrating medical-purpose Internet of Things (IoT) devices, deep and digital phenotyping, and advanced artificial intelligence (AI), offer unprecedented precision in simulating real-world physical conditions and health outcomes. Originating in aerospace and manufacturing for system behavior prediction, their application in healthcare signifies a paradigm shift towards patient-specific care pathways. In dermatology, digital twins promise enhanced diagnostic accuracy, optimized treatment plans, and improved patient monitoring by accommodating the unique complexities of skin conditions. However, a comprehensive review across PubMed, Embase, Web of Science, Cochrane, and Scopus until February 5th, 2024, underscores a significant research gap; no direct studies on digital twins’ application in dermatology is identified. This gap signals challenges, including the intricate nature of skin diseases, ethical and privacy concerns, and the necessity for specialized algorithms. Overcoming these barriers through interdisciplinary efforts and focused research is essential for realizing digital twins’ potential in dermatology. This study advocates for a proactive exploration of digital twins, emphasizing the need for a tailored approach to dermatological care that is as personalized as the patients themselves.
中文翻译:
皮肤病学中的数字孪生、现状和未来之路
数字双胞胎是综合实时生物、环境和生活方式数据的创新虚拟模型,预示着个性化医疗(尤其是皮肤病学)的新时代。这些模型集成了医疗用途的物联网 (IoT) 设备、深度数字表型分析以及先进的人工智能 (AI),在模拟现实世界的身体状况和健康结果方面提供了前所未有的精度。起源于航空航天和制造领域的系统行为预测,它们在医疗保健中的应用标志着向患者特定护理途径的范式转变。在皮肤病学中,数字孪生有望通过适应皮肤状况的独特复杂性来提高诊断准确性、优化治疗计划并改善患者监测。然而,截至 2024 年 2 月 5 日,PubMed、Embase、Web of Science、Cochrane 和 Scopus 的全面综述强调了重大的研究差距;尚未发现有关数字孪生在皮肤病学中应用的直接研究。这一差距标志着挑战,包括皮肤病的复杂性、道德和隐私问题以及专门算法的必要性。通过跨学科努力和重点研究克服这些障碍对于实现数字孪生在皮肤病学方面的潜力至关重要。这项研究提倡积极探索数字孪生,强调需要采用与患者本身一样个性化的定制皮肤病护理方法。