当前位置:
X-MOL 学术
›
Glob. Change Biol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Wheat genetic resources have avoided disease pandemics, improved food security, and reduced environmental footprints: A review of historical impacts and future opportunities
Global Change Biology ( IF 10.8 ) Pub Date : 2024-08-26 , DOI: 10.1111/gcb.17440 Julie King 1 , Susanne Dreisigacker 2 , Matthew Reynolds 2 , Anindya Bandyopadhyay 2 , Hans-Joachim Braun 2 , Leonardo Crespo-Herrera 2 , Jose Crossa 2, 3 , Velu Govindan 2 , Julio Huerta 2, 4 , Maria Itria Ibba 2 , Carlos A Robles-Zazueta 5 , Carolina Saint Pierre 2 , Pawan K Singh 2 , Ravi P Singh 2, 6 , V Mohan Murali Achary 2 , Sridhar Bhavani 2 , Gerald Blasch 2 , Shifeng Cheng 7 , Hannes Dempewolf 8 , Richard B Flavell 9 , Guillermo Gerard 2 , Surbhi Grewal 1 , Simon Griffiths 10 , Malcolm Hawkesford 11 , Xinyao He 2 , Sarah Hearne 2 , David Hodson 2 , Phil Howell 12 , Mohammad Reza Jalal Kamali 2 , Hannes Karwat 2 , Benjamin Kilian 13 , Ian P King 1 , Masahiro Kishii 8 , Victor Maurice Kommerell 2 , Evans Lagudah 14 , Caixia Lan 6 , Osval A Montesinos-Lopez 15 , Paul Nicholson 10 , Paulino Pérez-Rodríguez 3 , Francisco Pinto 16 , Kevin Pixley 2 , Greg Rebetzke 14 , Carolina Rivera-Amado 2 , Carolina Sansaloni 2 , Urs Schulthess 2, 17 , Shivali Sharma 13 , Peter Shewry 11 , Guntar Subbarao 8 , Thakur Prasad Tiwari 2 , Richard Trethowan 18 , Cristobal Uauy 10
Global Change Biology ( IF 10.8 ) Pub Date : 2024-08-26 , DOI: 10.1111/gcb.17440 Julie King 1 , Susanne Dreisigacker 2 , Matthew Reynolds 2 , Anindya Bandyopadhyay 2 , Hans-Joachim Braun 2 , Leonardo Crespo-Herrera 2 , Jose Crossa 2, 3 , Velu Govindan 2 , Julio Huerta 2, 4 , Maria Itria Ibba 2 , Carlos A Robles-Zazueta 5 , Carolina Saint Pierre 2 , Pawan K Singh 2 , Ravi P Singh 2, 6 , V Mohan Murali Achary 2 , Sridhar Bhavani 2 , Gerald Blasch 2 , Shifeng Cheng 7 , Hannes Dempewolf 8 , Richard B Flavell 9 , Guillermo Gerard 2 , Surbhi Grewal 1 , Simon Griffiths 10 , Malcolm Hawkesford 11 , Xinyao He 2 , Sarah Hearne 2 , David Hodson 2 , Phil Howell 12 , Mohammad Reza Jalal Kamali 2 , Hannes Karwat 2 , Benjamin Kilian 13 , Ian P King 1 , Masahiro Kishii 8 , Victor Maurice Kommerell 2 , Evans Lagudah 14 , Caixia Lan 6 , Osval A Montesinos-Lopez 15 , Paul Nicholson 10 , Paulino Pérez-Rodríguez 3 , Francisco Pinto 16 , Kevin Pixley 2 , Greg Rebetzke 14 , Carolina Rivera-Amado 2 , Carolina Sansaloni 2 , Urs Schulthess 2, 17 , Shivali Sharma 13 , Peter Shewry 11 , Guntar Subbarao 8 , Thakur Prasad Tiwari 2 , Richard Trethowan 18 , Cristobal Uauy 10
Affiliation
The use of plant genetic resources (PGR)—wild relatives, landraces, and isolated breeding gene pools—has had substantial impacts on wheat breeding for resistance to biotic and abiotic stresses, while increasing nutritional value, end‐use quality, and grain yield. In the Global South, post‐Green Revolution genetic yield gains are generally achieved with minimal additional inputs. As a result, production has increased, and millions of hectares of natural ecosystems have been spared. Without PGR‐derived disease resistance, fungicide use would have easily doubled, massively increasing selection pressure for fungicide resistance. It is estimated that in wheat, a billion liters of fungicide application have been avoided just since 2000. This review presents examples of successful use of PGR including the relentless battle against wheat rust epidemics/pandemics, defending against diseases that jump species barriers like blast, biofortification giving nutrient‐dense varieties and the use of novel genetic variation for improving polygenic traits like climate resilience. Crop breeding genepools urgently need to be diversified to increase yields across a range of environments (>200 Mha globally), under less predictable weather and biotic stress pressure, while increasing input use efficiency. Given that the ~0.8 m PGR in wheat collections worldwide are relatively untapped and massive impacts of the tiny fraction studied, larger scale screenings and introgression promise solutions to emerging challenges, facilitated by advanced phenomic and genomic tools. The first translocations in wheat to modify rhizosphere microbiome interaction (reducing biological nitrification, reducing greenhouse gases, and increasing nitrogen use efficiency) is a landmark proof of concept. Phenomics and next‐generation sequencing have already elucidated exotic haplotypes associated with biotic and complex abiotic traits now mainstreamed in breeding. Big data from decades of global yield trials can elucidate the benefits of PGR across environments. This kind of impact cannot be achieved without widescale sharing of germplasm and other breeding technologies through networks and public–private partnerships in a pre‐competitive space.
中文翻译:
小麦遗传资源避免了疾病大流行,改善了粮食安全,并减少了环境足迹:回顾历史影响和未来机遇
植物遗传资源(PGR)——野生近缘种、地方品种和分离育种基因库——的利用对小麦抗生物和非生物胁迫育种产生了重大影响,同时提高了营养价值、最终使用质量和谷物产量。在南半球国家,绿色革命后的基因产量增益通常是通过最少的额外投入来实现的。结果,产量增加了,数百万公顷的自然生态系统得以幸免。如果没有 PGR 衍生的抗病性,杀菌剂的使用量很容易就会增加一倍,从而大大增加杀菌剂抗性的选择压力。据估计,自 2000 年以来,小麦中已经避免了 10 亿升杀菌剂的使用。这篇综述介绍了 PGR 的成功使用实例,包括与小麦锈病流行病/大流行病的不懈斗争,防御稻瘟病等跨越物种障碍的疾病,生物强化提供营养丰富的品种,并利用新的遗传变异来改善气候适应能力等多基因性状。作物育种基因库迫切需要多样化,以在难以预测的天气和生物胁迫压力下提高各种环境下的产量(全球>200 Mha),同时提高投入使用效率。鉴于全球小麦收藏中约 0.8 m 的 PGR 相对尚未开发,并且所研究的微小部分产生了巨大影响,在先进的表型组和基因组工具的推动下,更大规模的筛选和基因渗入有望解决新出现的挑战。小麦中首次通过易位改变根际微生物组相互作用(减少生物硝化、减少温室气体和提高氮利用效率)是具有里程碑意义的概念证明。 表型组学和下一代测序已经阐明了与生物和复杂非生物性状相关的外来单倍型,这些性状现已成为育种的主流。来自数十年全球产量试验的大数据可以阐明 PGR 跨环境的好处。如果没有通过网络和公私伙伴关系在竞争前的空间中广泛共享种质和其他育种技术,就无法实现这种影响。
更新日期:2024-08-26
中文翻译:
小麦遗传资源避免了疾病大流行,改善了粮食安全,并减少了环境足迹:回顾历史影响和未来机遇
植物遗传资源(PGR)——野生近缘种、地方品种和分离育种基因库——的利用对小麦抗生物和非生物胁迫育种产生了重大影响,同时提高了营养价值、最终使用质量和谷物产量。在南半球国家,绿色革命后的基因产量增益通常是通过最少的额外投入来实现的。结果,产量增加了,数百万公顷的自然生态系统得以幸免。如果没有 PGR 衍生的抗病性,杀菌剂的使用量很容易就会增加一倍,从而大大增加杀菌剂抗性的选择压力。据估计,自 2000 年以来,小麦中已经避免了 10 亿升杀菌剂的使用。这篇综述介绍了 PGR 的成功使用实例,包括与小麦锈病流行病/大流行病的不懈斗争,防御稻瘟病等跨越物种障碍的疾病,生物强化提供营养丰富的品种,并利用新的遗传变异来改善气候适应能力等多基因性状。作物育种基因库迫切需要多样化,以在难以预测的天气和生物胁迫压力下提高各种环境下的产量(全球>200 Mha),同时提高投入使用效率。鉴于全球小麦收藏中约 0.8 m 的 PGR 相对尚未开发,并且所研究的微小部分产生了巨大影响,在先进的表型组和基因组工具的推动下,更大规模的筛选和基因渗入有望解决新出现的挑战。小麦中首次通过易位改变根际微生物组相互作用(减少生物硝化、减少温室气体和提高氮利用效率)是具有里程碑意义的概念证明。 表型组学和下一代测序已经阐明了与生物和复杂非生物性状相关的外来单倍型,这些性状现已成为育种的主流。来自数十年全球产量试验的大数据可以阐明 PGR 跨环境的好处。如果没有通过网络和公私伙伴关系在竞争前的空间中广泛共享种质和其他育种技术,就无法实现这种影响。