当前位置:
X-MOL 学术
›
Soft Robot.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Toward Onboard Proportional Control of Multi-Chamber Soft Pneumatic Robots: A Magnetorheological Elastomer Valve Array.
Soft Robotics ( IF 6.4 ) Pub Date : 2024-04-04 , DOI: 10.1089/soro.2023.0049 Sihan Wang 1 , Peizhi Zhang 2 , Liang He 1 , Perla Maiolino 1, 3
Soft Robotics ( IF 6.4 ) Pub Date : 2024-04-04 , DOI: 10.1089/soro.2023.0049 Sihan Wang 1 , Peizhi Zhang 2 , Liang He 1 , Perla Maiolino 1, 3
Affiliation
Soft pneumatic actuators (SPAs) are commonly used in various applications because of their structural compliance, low cost, ease of manufacture, high adaptability, and safe human-robot interaction. The traditional approach for achieving proportional control of soft pneumatic robots requires the use of industrial proportional valves or syringe drivers, which are not only rigid and bulky but also hard to be integrated into the body of soft robots. In our previous research, we developed a Magnetorheological elastomer (MRE)-based soft valve that showed advantages for controlling SPAs due to its compliance, compactness, robustness, and compatibility for continuous pressure modulation. Modern soft robots with multiple chambers require more MRE valves onboard for their control. However, merely packing more MRE valves for soft robots can cause problems like magnetic interference, flow rate deviation, and overheating. Therefore, in this study, we proposed a two-dimensional MRE valve array design to solve issues of magnetic interference and overheating when expanding from a single MRE proportional valve into an integrated array. The magnetic interference and the overheating problem were investigated through multiphysics simulation, bringing the optimal choice of valve spacing (1.2 times the single valve diameter), magnetic coil pole arrangement (same pole), and the cooling system design (internal cooling chamber with flowing water). Physical experiments showed that our MRE valve array maintained its original flowrate performance with low magnetic interference (0.89 mT) and low coil temperature (under 73.9°C for 5 min).
中文翻译:
面向多室软气动机器人的机载比例控制:磁流变弹性体阀阵列。
软气动执行器(SPA)因其结构合规性、低成本、易于制造、高适应性和安全的人机交互而被广泛应用于各种应用中。传统的实现软体气动机器人比例控制的方法需要使用工业比例阀或注射器驱动器,它们不仅刚性大、体积大,而且难以集成到软体机器人的身体中。在我们之前的研究中,我们开发了一种基于磁流变弹性体 (MRE) 的软阀,由于其合规性、紧凑性、坚固性和连续压力调制的兼容性,该阀在控制 SPA 方面显示出优势。具有多个腔室的现代软机器人需要更多的 MRE 阀来进行控制。然而,仅仅为软体机器人包装更多的MRE阀门可能会导致诸如磁干扰、流量偏差和过热等问题。因此,在本研究中,我们提出了一种二维MRE阀阵列设计,以解决从单个MRE比例阀扩展到集成阵列时的磁干扰和过热问题。通过多物理场仿真研究了磁干扰和过热问题,给出了阀间距(单阀直径的1.2倍)、磁力线圈磁极排列(同极)和冷却系统设计(内部流水冷却室)的最佳选择。 )。物理实验表明,我们的MRE阀阵列保持了原有的流量性能,具有低磁干扰(0.89 mT)和低线圈温度(73.9°C以下5分钟)。
更新日期:2024-04-04
中文翻译:
面向多室软气动机器人的机载比例控制:磁流变弹性体阀阵列。
软气动执行器(SPA)因其结构合规性、低成本、易于制造、高适应性和安全的人机交互而被广泛应用于各种应用中。传统的实现软体气动机器人比例控制的方法需要使用工业比例阀或注射器驱动器,它们不仅刚性大、体积大,而且难以集成到软体机器人的身体中。在我们之前的研究中,我们开发了一种基于磁流变弹性体 (MRE) 的软阀,由于其合规性、紧凑性、坚固性和连续压力调制的兼容性,该阀在控制 SPA 方面显示出优势。具有多个腔室的现代软机器人需要更多的 MRE 阀来进行控制。然而,仅仅为软体机器人包装更多的MRE阀门可能会导致诸如磁干扰、流量偏差和过热等问题。因此,在本研究中,我们提出了一种二维MRE阀阵列设计,以解决从单个MRE比例阀扩展到集成阵列时的磁干扰和过热问题。通过多物理场仿真研究了磁干扰和过热问题,给出了阀间距(单阀直径的1.2倍)、磁力线圈磁极排列(同极)和冷却系统设计(内部流水冷却室)的最佳选择。 )。物理实验表明,我们的MRE阀阵列保持了原有的流量性能,具有低磁干扰(0.89 mT)和低线圈温度(73.9°C以下5分钟)。