Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
tRNA-m1A methylation controls the infection of Magnaporthe oryzae by supporting ergosterol biosynthesis
Developmental Cell ( IF 10.7 ) Pub Date : 2024-08-26 , DOI: 10.1016/j.devcel.2024.08.002 Rongrong He 1 , Ziwei Lv 2 , Yinan Li 1 , Shuchao Ren 1 , Jiaqi Cao 1 , Jun Zhu 2 , Xinrong Zhang 2 , Huimin Wu 3 , Lihao Wan 3 , Ji Tang 1 , Shutong Xu 3 , Xiao-Lin Chen 2 , Zhipeng Zhou 1
Developmental Cell ( IF 10.7 ) Pub Date : 2024-08-26 , DOI: 10.1016/j.devcel.2024.08.002 Rongrong He 1 , Ziwei Lv 2 , Yinan Li 1 , Shuchao Ren 1 , Jiaqi Cao 1 , Jun Zhu 2 , Xinrong Zhang 2 , Huimin Wu 3 , Lihao Wan 3 , Ji Tang 1 , Shutong Xu 3 , Xiao-Lin Chen 2 , Zhipeng Zhou 1
Affiliation
Ergosterols are essential components of fungal plasma membranes. Inhibitors targeting ergosterol biosynthesis (ERG) genes are critical for controlling fungal pathogens, including Magnaporthe oryzae, the fungus that causes rice blast. However, the translational mechanisms governing ERG gene expression remain largely unexplored. Here, we show that the Trm6/Trm61 complex catalyzes dynamic N1-methyladenosine at position 58 (m1A58) in 51 transfer RNAs (tRNAs) of M. oryzae, significantly influencing translation at both the initiation and elongation stages. Notably, tRNA m1A58 promotes elongation speed at most cognate codons mainly by enhancing eEF1-tRNA binding rather than affecting tRNA abundance or charging. The absence of m1A58 leads to substantial decreases in the translation of ERG genes, ergosterol production, and, consequently, fungal virulence. Simultaneously targeting the Trm6/Trm61 complex and the ergosterol biosynthesis pathway markedly improves rice blast control. Our findings demonstrate an important role of m1A58-mediated translational regulation in ergosterol production and fungal infection, offering a potential strategy for fungicide development.
中文翻译:
tRNA-m1A 甲基化通过支持麦角甾醇生物合成来控制米瘟病菌的感染
麦角甾醇是真菌质膜的重要组成部分。靶向麦角甾醇生物合成 (ERG) 基因的抑制剂对于控制真菌病原体至关重要,包括引起稻瘟病的真菌 Magnaporthe oryzae。然而,控制 ERG 基因表达的翻译机制在很大程度上仍未得到探索。在这里,我们表明 Trm6/Trm61 复合物催化米曲霉 51 个转运 RNA (tRNA) 中第 58 位 (m1A58) 的动态 N1-甲基腺苷,显着影响起始和延伸阶段的翻译。值得注意的是,tRNA m1A58 主要通过增强 eEF1-tRNA 结合而不是影响 tRNA 丰度或充电来促进大多数同源密码子的伸长速度。m1A58 的缺失导致 ERG 基因的翻译、麦角甾醇的产生显着降低,从而导致真菌毒力的降低。同时靶向 Trm6/Trm61 复合物和麦角甾醇生物合成途径显着改善了稻瘟病控制。我们的研究结果表明 m1A58 介导的翻译调节在麦角甾醇生产和真菌感染中起重要作用,为杀菌剂开发提供了潜在的策略。
更新日期:2024-08-26
中文翻译:
tRNA-m1A 甲基化通过支持麦角甾醇生物合成来控制米瘟病菌的感染
麦角甾醇是真菌质膜的重要组成部分。靶向麦角甾醇生物合成 (ERG) 基因的抑制剂对于控制真菌病原体至关重要,包括引起稻瘟病的真菌 Magnaporthe oryzae。然而,控制 ERG 基因表达的翻译机制在很大程度上仍未得到探索。在这里,我们表明 Trm6/Trm61 复合物催化米曲霉 51 个转运 RNA (tRNA) 中第 58 位 (m1A58) 的动态 N1-甲基腺苷,显着影响起始和延伸阶段的翻译。值得注意的是,tRNA m1A58 主要通过增强 eEF1-tRNA 结合而不是影响 tRNA 丰度或充电来促进大多数同源密码子的伸长速度。m1A58 的缺失导致 ERG 基因的翻译、麦角甾醇的产生显着降低,从而导致真菌毒力的降低。同时靶向 Trm6/Trm61 复合物和麦角甾醇生物合成途径显着改善了稻瘟病控制。我们的研究结果表明 m1A58 介导的翻译调节在麦角甾醇生产和真菌感染中起重要作用,为杀菌剂开发提供了潜在的策略。