当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Breakthrough in the large area photoanode fabrication process: high concentration precursor solution with solvent mixing and one step spin coating for high PEC performance of BiVO4
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2024-08-26 , DOI: 10.1039/d4ta03349c
Hoyoung Lee 1, 2 , Gil-Seong Kang 1 , Hanyi Lim 1 , Hyobin Han 2, 3 , Tae Woo Kim 3 , Jun-Hyuk Choi 1 , Dae-Geun Choi 1 , Joo-Yun Jung 1 , Jun-Ho Jeong 1 , Jong Hyeok Park 2 , Jihye Lee 1
Affiliation  

Advancements in the efficiency of hydrogen production via photoelectrochemical water splitting have led to a focus on scalability, ease of fabrication, and cost-effectiveness. Yet, challenges such as prolonged processing times and complex procedures persist, demanding innovative breakthroughs. Our study presents a streamlined method for fabricating high-efficiency BiVO4 films for PEC application, employing one-step spin coating with high-concentration precursor solutions, making it apt for large-scale deployment. Optimizing solvent and precursor ratios led to a notable photocurrent density of 5.03 mA cm−2 at 1.23 VRHE. This enhancement could be attributed to an increase in light absorption owing to an increase in the (040) crystal plane and Mie scattering, optimized film thickness, large grain size and decreased surface dangling bonds, resulting in enhanced carrier density and improved carrier transfer and transport. This approach enabled the cost-effective production of large-area BiVO4 photoanodes, which effectively generated high current in a PEC-PV system through self-driven solar water splitting. Our study highlights a pathway towards commercial-scale solar-powered hydrogen production technologies.

中文翻译:


大面积光阳极制造工艺取得突破:高浓度前驱体溶液,溶剂混合和一步旋涂,实现 BiVO4 的高 PEC 性能



通过光电化学水分解制氢效率的提高引起了人们对可扩展性、易于制造和成本效益的关注。然而,处理时间长、程序复杂等挑战仍然存在,需要创新突破。我们的研究提出了一种用于PEC应用的高效BiVO 4薄膜制造的简化方法,采用一步旋涂高浓度前驱体溶液,使其适合大规模部署。优化溶剂和前驱体比例导致在1.23 V RHE下获得5.03 mA cm -2的显着光电流密度。这种增强可归因于 (040) 晶面和米氏散射的增加、优化的薄膜厚度、大晶粒尺寸和减少的表面悬挂键导致光吸收的增加,从而提高了载流子密度并改善了载流子转移和传输。这种方法能够经济有效地生产大面积 BiVO 4光阳极,通过自驱动太阳能水分解在 PEC-PV 系统中有效地产生高电流。我们的研究强调了商业规模太阳能制氢技术的途径。
更新日期:2024-08-26
down
wechat
bug