当前位置: X-MOL 学术J. Adv. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
CRISPR/Cas genome editing in soybean: challenges and new insights to overcome existing bottlenecks
Journal of Advanced Research ( IF 11.4 ) Pub Date : 2024-08-18 , DOI: 10.1016/j.jare.2024.08.024
Nayara Sabrina Freitas-Alves 1 , Clidia E Moreira-Pinto 2 , Fabiano T P K Távora 2 , Bruno Paes-de-Melo 2 , Fabricio B M Arraes 2 , Isabela T Lourenço-Tessutti 2 , Stéfanie M Moura 2 , Antonio C Oliveira 3 , Carolina V Morgante 4 , Yiping Qi 5 , Maria Fatima Grossi-de-Sa 6
Affiliation  

Background

Soybean is a worldwide-cultivated crop due to its applications in the food, feed, and biodiesel industries. Genome editing in soybean began with ZFN and TALEN technologies; however, CRISPR/Cas has emerged and shortly became the preferable approach for soybean genome manipulation since it is more precise, easy to handle, and cost-effective. Recent reports have focused on the conventional Cas9 nuclease, Cas9 nickase (nCas9) derived base editors, and Cas12a (formally Cpf1) as the most commonly used genome editors in soybean. Nonetheless, several challenges in the complex plant genetic engineering pipeline need to be overcome to effectively edit the genome of an elite soybean cultivar. These challenges include (1) optimizing CRISPR cassette design (i.e., gRNA and Cas promoters, gRNA design and testing, number of gRNAs, and binary vector), (2) improving transformation frequency, (3) increasing the editing efficiency ratio of targeted plant cells, and (4) improving soybean crop production.

Aim of review

This review provides an overview of soybean genome editing using CRISPR/Cas technology, discusses current challenges, and highlights theoretical (insights) and practical suggestions to overcome the existing bottlenecks.

Key scientific concepts of review

The CRISPR/Cas system was discovered as part of the bacterial innate immune system. It has been used as a biotechnological tool for genome editing and efficiently applied in soybean to unveil gene function, improve agronomic traits such as yield and nutritional grain quality, and enhance biotic and abiotic stress tolerance. To date, the efficiency of gRNAs has been validated using protoplasts and hairy root assays, while stable plant transformation relies on Agrobacterium-mediated and particle bombardment methods. Nevertheless, most steps of the CRISPR/Cas workflow require optimizations to achieve a more effective genome editing in soybean plants.


中文翻译:


大豆 CRISPR/Cas 基因组编辑:克服现有瓶颈的挑战和新见解


 背景


大豆是一种世界范围内种植的作物,因为它在食品、饲料和生物柴油行业中的应用。大豆的基因组编辑始于 ZFN 和 TALEN 技术;然而,CRISPR/Cas 已经出现并很快成为大豆基因组操作的首选方法,因为它更精确、易于处理且具有成本效益。最近的报道集中在传统的 Cas9 核酸酶、Cas9 切口酶 (nCas9) 衍生的碱基编辑器和 Cas12a(正式名称为 Cpf1)作为大豆中最常用的基因组编辑器。尽管如此,需要克服复杂的植物基因工程管道中的几个挑战,才能有效地编辑优质大豆品种的基因组。这些挑战包括 (1) 优化 CRISPR 盒设计(即 gRNA 和 Cas 启动子、gRNA 设计和测试、gRNA 数量和二元载体),(2) 提高转化频率,(3) 提高目标植物细胞的编辑效率比率,以及 (4) 提高大豆作物产量。

 综述目的


本文概述了使用 CRISPR/Cas 技术进行大豆基因组编辑,讨论了当前的挑战,并强调了克服现有瓶颈的理论(见解)和实践建议。


综述的关键科学概念


CRISPR/Cas 系统被发现是细菌先天免疫系统的一部分。它已被用作基因组编辑的生物技术工具,并有效地应用于大豆中,以揭示基因功能,提高产量和营养谷物品质等农艺性状,并增强生物和非生物胁迫耐受性。迄今为止,已经使用原生质体和毛状根测定验证了 gRNA 的效率,而稳定的植物转化依赖于农杆菌介导的粒子轰炸方法。然而,CRISPR/Cas 工作流程的大多数步骤都需要优化,以实现更有效的大豆植物基因组编辑。
更新日期:2024-08-18
down
wechat
bug