当前位置:
X-MOL 学术
›
Adv. Drug Deliver. Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Model-informed precision dosing: State of the art and future perspectives
Advanced Drug Delivery Reviews ( IF 15.2 ) Pub Date : 2024-08-17 , DOI: 10.1016/j.addr.2024.115421 I K Minichmayr 1 , E Dreesen 2 , M Centanni 3 , Z Wang 2 , Y Hoffert 2 , L E Friberg 3 , S G Wicha 4
Advanced Drug Delivery Reviews ( IF 15.2 ) Pub Date : 2024-08-17 , DOI: 10.1016/j.addr.2024.115421 I K Minichmayr 1 , E Dreesen 2 , M Centanni 3 , Z Wang 2 , Y Hoffert 2 , L E Friberg 3 , S G Wicha 4
Affiliation
Model-informed precision dosing (MIPD) stands as a significant development in personalized medicine to tailor drug dosing to individual patient characteristics. MIPD moves beyond traditional therapeutic drug monitoring (TDM) by integrating mathematical predictions of dosing, and considering patient-specific factors (patient characteristics, drug measurements) as well as different sources of variability. For this purpose, rigorous model qualification is required for the application of MIPD in patients. This review delves into new methods in model selection and validation, also highlighting the role of machine learning in improving MIPD, the utilization of biosensors for real-time monitoring, as well as the potential of models integrating biomarkers for efficacy or toxicity for precision dosing. The clinical evidence of TDM and MIPD is discussed for various medical fields including infection medicine, oncology, transplant medicine, and inflammatory bowel diseases, thereby underscoring the role of pharmacokinetics/pharmacodynamics and specific biomarkers. Further research, particularly randomized clinical trials, is warranted to corroborate the value of MIPD in enhancing patient outcomes and advancing personalized medicine.
中文翻译:
模型驱动的精确加样:最新技术和未来前景
模型知情精确给药 (MIPD) 是个性化医疗的一项重大发展,可根据个体患者的特征定制药物剂量。MIPD 通过整合剂量的数学预测,并考虑患者特定因素(患者特征、药物测量)以及不同的变异来源,超越了传统的治疗药物监测 (TDM)。为此,MIPD 在患者身上的应用需要严格的模型鉴定。这篇综述深入探讨了模型选择和验证的新方法,还强调了机器学习在改进 MIPD、利用生物传感器进行实时监测以及模型整合生物标志物以实现精确给药的功效或毒性方面的潜力。讨论了 TDM 和 MIPD 的临床证据用于各种医学领域,包括感染医学、肿瘤学、移植医学和炎症性肠病,从而强调了药代动力学/药效学和特定生物标志物的作用。进一步的研究,特别是随机临床试验,需要证实 MIPD 在提高患者预后和推进个性化医疗方面的价值。
更新日期:2024-08-17
中文翻译:
模型驱动的精确加样:最新技术和未来前景
模型知情精确给药 (MIPD) 是个性化医疗的一项重大发展,可根据个体患者的特征定制药物剂量。MIPD 通过整合剂量的数学预测,并考虑患者特定因素(患者特征、药物测量)以及不同的变异来源,超越了传统的治疗药物监测 (TDM)。为此,MIPD 在患者身上的应用需要严格的模型鉴定。这篇综述深入探讨了模型选择和验证的新方法,还强调了机器学习在改进 MIPD、利用生物传感器进行实时监测以及模型整合生物标志物以实现精确给药的功效或毒性方面的潜力。讨论了 TDM 和 MIPD 的临床证据用于各种医学领域,包括感染医学、肿瘤学、移植医学和炎症性肠病,从而强调了药代动力学/药效学和特定生物标志物的作用。进一步的研究,特别是随机临床试验,需要证实 MIPD 在提高患者预后和推进个性化医疗方面的价值。