Journal of Neuroscience ( IF 4.4 ) Pub Date : 2024-09-04 , DOI: 10.1523/jneurosci.0301-24.2024 Taly Kondat 1, 2 , Niv Tik 1 , Haggai Sharon 3 , Ido Tavor 1, 4 , Nitzan Censor 2, 5
The developed human brain shows remarkable plasticity following perceptual learning, resulting in improved visual sensitivity. However, such improvements commonly require extensive stimuli exposure. Here we show that efficiently enhancing visual perception with minimal stimuli exposure recruits distinct neural mechanisms relative to standard repetition-based learning. Participants (n = 20, 12 women, 8 men) encoded a visual discrimination task, followed by brief memory reactivations of only five trials each performed on separate days, demonstrating improvements comparable with standard repetition-based learning (n = 20, 12 women, 8 men). Reactivation-induced learning engaged increased bilateral intraparietal sulcus (IPS) activity relative to repetition-based learning. Complementary evidence for differential learning processes was further provided by temporal–parietal resting functional connectivity changes, which correlated with behavioral improvements. The results suggest that efficiently enhancing visual perception with minimal stimuli exposure recruits distinct neural processes, engaging higher-order control and attentional resources while leading to similar perceptual gains. These unique brain mechanisms underlying improved perceptual learning efficiency may have important implications for daily life and in clinical conditions requiring relearning following brain damage.
中文翻译:
独特的神经可塑性增强视觉感知
发达的人类大脑在感知学习后表现出显着的可塑性,从而提高了视觉灵敏度。然而,这种改善通常需要大量的刺激。在这里,我们表明,与标准的基于重复的学习相比,以最小的刺激暴露有效增强视觉感知会招募不同的神经机制。参与者( n = 20,12 名女性,8 名男性)编码了一项视觉辨别任务,然后对每个在不同日期进行的仅五次试验进行了短暂的记忆重新激活,证明了与标准基于重复的学习相当的改进( n = 20,12 名女性, 8 人)。相对于基于重复的学习,重新激活诱导的学习增加了双侧顶内沟(IPS)活动。颞顶叶静息功能连接的变化进一步提供了差异学习过程的补充证据,这与行为改善相关。结果表明,以最小的刺激暴露有效增强视觉感知会招募不同的神经过程,参与更高阶的控制和注意力资源,同时导致类似的感知增益。这些独特的大脑机制提高了感知学习效率,可能对日常生活和脑损伤后需要重新学习的临床条件产生重要影响。