当前位置:
X-MOL 学术
›
Mol. Plant
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Genetic variation in a heat shock transcription factor modulates cold tolerance in maize
Molecular Plant ( IF 17.1 ) Pub Date : 2024-08-07 , DOI: 10.1016/j.molp.2024.07.015 Lei Gao 1 , Lingling Pan 2 , Yiting Shi 1 , Rong Zeng 1 , Minze Li 1 , Zhuoyang Li 1 , Xuan Zhang 2 , Xiaoming Zhao 1 , Xinru Gong 3 , Wei Huang 2 , Xiaohong Yang 2 , Jinsheng Lai 2 , Jianru Zuo 3 , Zhizhong Gong 1 , Xiqing Wang 1 , Weiwei Jin 2 , Zhaobin Dong 2 , Shuhua Yang 1
Molecular Plant ( IF 17.1 ) Pub Date : 2024-08-07 , DOI: 10.1016/j.molp.2024.07.015 Lei Gao 1 , Lingling Pan 2 , Yiting Shi 1 , Rong Zeng 1 , Minze Li 1 , Zhuoyang Li 1 , Xuan Zhang 2 , Xiaoming Zhao 1 , Xinru Gong 3 , Wei Huang 2 , Xiaohong Yang 2 , Jinsheng Lai 2 , Jianru Zuo 3 , Zhizhong Gong 1 , Xiqing Wang 1 , Weiwei Jin 2 , Zhaobin Dong 2 , Shuhua Yang 1
Affiliation
Understanding how maize () responds to cold stress is crucial for facilitating breeding programs of cold-tolerant varieties. Despite extensive utilization of the genome-wide association study (GWAS) approach for exploring favorable natural alleles associated with maize cold tolerance, few studies have successfully identified candidate genes that contribute to maize cold tolerance. In this study, we used a diverse panel of inbred maize lines collected from different germplasm sources to perform a GWAS on variations in the relative injured area of maize true leaves during cold stress—a trait very closely correlated with maize cold tolerance. We identified , which encodes a B-class heat shock transcription factor (HSF) that positively regulates cold tolerance at both the seedling and germination stages. Natural variations in the promoter of the cold-tolerant allele led to increased expression under cold stress by inhibiting binding of the basic leucine zipper bZIP68 transcription factor, a negative regulator of cold tolerance. By integrating transcriptome deep sequencing, DNA affinity purification sequencing, and targeted lipidomic analysis, we revealed the function of in regulating lipid metabolism homeostasis to modulate cold tolerance in maize. In addition, we found that confers maize cold tolerance without incurring yield penalties. Collectively, this study establishes as a key regulator that enhances cold tolerance in maize, providing valuable genetic resources for breeding of cold-tolerant maize varieties.
中文翻译:
热休克转录因子的遗传变异调节玉米的耐寒性
了解玉米如何应对冷胁迫对于促进耐寒品种的育种计划至关重要。尽管广泛利用全基因组关联研究(GWAS)方法来探索与玉米耐冷性相关的有利天然等位基因,但很少有研究成功鉴定出有助于玉米耐冷性的候选基因。在这项研究中,我们使用从不同种质来源收集的多种自交玉米系,对冷胁迫期间玉米真叶相对受损区域的变化进行了全基因组关联分析(GWAS)——这一性状与玉米耐寒性密切相关。我们鉴定出 ,它编码 B 类热休克转录因子 (HSF),可在幼苗和发芽阶段积极调节耐冷性。耐冷等位基因启动子的自然变异通过抑制碱性亮氨酸拉链 bZIP68 转录因子(耐冷负调节因子)的结合,导致冷应激下表达增加。通过整合转录组深度测序、DNA亲和纯化测序和靶向脂质组学分析,我们揭示了调节脂质代谢稳态以调节玉米耐寒性的功能。此外,我们发现赋予玉米耐冷性而不会造成产量损失。总的来说,本研究确立了增强玉米耐寒性的关键调控因子,为耐寒玉米品种的选育提供了宝贵的遗传资源。
更新日期:2024-08-07
中文翻译:
热休克转录因子的遗传变异调节玉米的耐寒性
了解玉米如何应对冷胁迫对于促进耐寒品种的育种计划至关重要。尽管广泛利用全基因组关联研究(GWAS)方法来探索与玉米耐冷性相关的有利天然等位基因,但很少有研究成功鉴定出有助于玉米耐冷性的候选基因。在这项研究中,我们使用从不同种质来源收集的多种自交玉米系,对冷胁迫期间玉米真叶相对受损区域的变化进行了全基因组关联分析(GWAS)——这一性状与玉米耐寒性密切相关。我们鉴定出 ,它编码 B 类热休克转录因子 (HSF),可在幼苗和发芽阶段积极调节耐冷性。耐冷等位基因启动子的自然变异通过抑制碱性亮氨酸拉链 bZIP68 转录因子(耐冷负调节因子)的结合,导致冷应激下表达增加。通过整合转录组深度测序、DNA亲和纯化测序和靶向脂质组学分析,我们揭示了调节脂质代谢稳态以调节玉米耐寒性的功能。此外,我们发现赋予玉米耐冷性而不会造成产量损失。总的来说,本研究确立了增强玉米耐寒性的关键调控因子,为耐寒玉米品种的选育提供了宝贵的遗传资源。