当前位置:
X-MOL 学术
›
Psychological Review
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Dynamic retrieval of events and associations from memory: An integrated account of item and associative recognition.
Psychological Review ( IF 5.1 ) Pub Date : 2024-07-25 , DOI: 10.1037/rev0000486 Gregory E Cox 1
Psychological Review ( IF 5.1 ) Pub Date : 2024-07-25 , DOI: 10.1037/rev0000486 Gregory E Cox 1
Affiliation
Memory theories distinguish between item and associative information, which are engaged by different tasks: item recognition uses item information to decide whether an event occurred in a particular context; associative recognition uses associative information to decide whether two events occurred together. Associative recognition is slower and less accurate than item recognition, suggesting that item and associative information may be represented in different forms and retrieved using different processes. Instead, I show how a dynamic model (Cox & Criss, 2020; Cox & Shiffrin, 2017) accounts for accuracy and response time distributions in both item and associative recognition with the same set of representations and processes. Item and associative information are both represented as vectors of features. Item and associative recognition both depend on comparing traces in memory with probes of memory in which item and associative features gradually accumulate. Associative features are slower to accumulate, but largely because they emerge from conjunctions of already-accumulated item features. I apply the model to data from 453 participants, each of whom performed an item and performed associative recognition following identical study conditions (Cox et al., 2018). Comparisons among restricted versions of the model show that its account of associative feature formation, coupled with limits on the rate at which features accumulate from multiple items, explains how and why the dynamics of associative recognition differ from those of item recognition even while both tasks rely on the same underlying representations. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
中文翻译:
从记忆中动态检索事件和关联:项目和关联识别的综合说明。
记忆理论区分了项目信息和关联信息,它们涉及不同的任务:项目识别使用项目信息来决定事件是否发生在特定的上下文中;联想识别使用联想信息来确定两个事件是否一起发生。关联识别比项目识别更慢且不太准确,这表明项目和关联信息可以以不同的形式表示并使用不同的过程来检索。相反,我展示了动态模型(Cox & Criss,2020;Cox & Shiffrin,2017)如何利用同一组表示和过程来解释项目识别和关联识别中的准确性和响应时间分布。项目和关联信息都表示为特征向量。项目和联想识别都依赖于将记忆中的痕迹与记忆探针进行比较,其中项目和联想特征逐渐积累。关联特征的积累速度较慢,但很大程度上是因为它们是从已经积累的项目特征的结合中产生的。我将该模型应用于 453 名参与者的数据,每个参与者都在相同的研究条件下执行一个项目并进行联想识别(Cox 等人,2018)。该模型的受限版本之间的比较表明,它对关联特征形成的解释,加上对多个项目的特征积累速率的限制,解释了关联识别的动态如何以及为何不同于项目识别的动态,即使这两个任务都依赖于在相同的基础表示上。 (PsycInfo 数据库记录 (c) 2024 APA,保留所有权利)。
更新日期:2024-07-25
中文翻译:
从记忆中动态检索事件和关联:项目和关联识别的综合说明。
记忆理论区分了项目信息和关联信息,它们涉及不同的任务:项目识别使用项目信息来决定事件是否发生在特定的上下文中;联想识别使用联想信息来确定两个事件是否一起发生。关联识别比项目识别更慢且不太准确,这表明项目和关联信息可以以不同的形式表示并使用不同的过程来检索。相反,我展示了动态模型(Cox & Criss,2020;Cox & Shiffrin,2017)如何利用同一组表示和过程来解释项目识别和关联识别中的准确性和响应时间分布。项目和关联信息都表示为特征向量。项目和联想识别都依赖于将记忆中的痕迹与记忆探针进行比较,其中项目和联想特征逐渐积累。关联特征的积累速度较慢,但很大程度上是因为它们是从已经积累的项目特征的结合中产生的。我将该模型应用于 453 名参与者的数据,每个参与者都在相同的研究条件下执行一个项目并进行联想识别(Cox 等人,2018)。该模型的受限版本之间的比较表明,它对关联特征形成的解释,加上对多个项目的特征积累速率的限制,解释了关联识别的动态如何以及为何不同于项目识别的动态,即使这两个任务都依赖于在相同的基础表示上。 (PsycInfo 数据库记录 (c) 2024 APA,保留所有权利)。