Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Enhancing the safety and thermal stability of polyurethane filling materials in the mining industry through expanded graphite-based hydrated salts
Polymer ( IF 4.1 ) Pub Date : 2024-08-22 , DOI: 10.1016/j.polymer.2024.127525 Haihui Xin , PengCheng Zhang , Yichao Lin , Yongjian Zhu , Lingjie Qiao , Yi Yang , Hezi Wang , Zhangfan Qi , Botao Qin , Deming Wang
Polymer ( IF 4.1 ) Pub Date : 2024-08-22 , DOI: 10.1016/j.polymer.2024.127525 Haihui Xin , PengCheng Zhang , Yichao Lin , Yongjian Zhu , Lingjie Qiao , Yi Yang , Hezi Wang , Zhangfan Qi , Botao Qin , Deming Wang
The utilization of Polyurethane foaming materials (PUF) to seal coal fissures presents a significant challenge due to the substantial heat generated during the reaction process, potentially accelerating fires. In order to study this issue, we propose a novel low-heat polymerization mechanism by incorporating a hydrated salt phase change composite that efficiently absorbs polymerization heat while encapsulating liquid water using expanded graphite (EG). Our findings demonstrate that integrating 10 % EG-6 leak-free phase change material effectively reduces the reaction temperature to a safer 91.4 °C, ensuring minimal impact on the inherent properties of the material. Thorough analyses via TGA and in-situ IR experiments reveal a noteworthy 17 °C elevation in the modified PUF's thermodynamic characteristic temperature point. Additionally, we developed a mixed combustion model of PUF and coal to investigate the gas generation pattern of polyurethane in the mine-filled state where fire occurs. Specifically, the introduction of PUF reduced O2 consumption and CO production while increasing CO2 and C2 H4 production, which is consistent with the reality of increased carbon hydrocarbon gases being monitored downhole. These findings suggest a synergistic, mutually beneficial relationship between the two during the low-temperature oxidation stage. This research offers perspectives for the development of polymer materials for coal mines and the safe application of actual filling.
中文翻译:
通过膨胀石墨基水合盐提高采矿业中聚氨酯填充材料的安全性和热稳定性
利用聚氨酯泡沫材料(PUF)密封煤裂隙面临着重大挑战,因为反应过程中会产生大量热量,可能会加速火灾。为了研究这个问题,我们提出了一种新颖的低热聚合机制,通过结合水合盐相变复合材料,该复合材料可以有效吸收聚合热,同时使用膨胀石墨(EG)封装液态水。我们的研究结果表明,集成 10% EG-6 无泄漏相变材料可有效将反应温度降低至更安全的 91.4 °C,确保对材料固有特性的影响最小。通过 TGA 和原位红外实验进行的全面分析表明,改性 PUF 的热力学特征温度点显着升高了 17 °C。此外,我们还开发了PUF和煤的混合燃烧模型,以研究聚氨酯在矿井充填状态下发生火灾时的气体生成模式。具体来说,PUF的引入减少了O2消耗和CO产生,同时增加了CO2和C2H4产量,这与井下监测的碳烃气体增加的实际情况一致。这些发现表明两者在低温氧化阶段之间存在协同、互利的关系。该研究为煤矿用高分子材料的发展和实际充填的安全应用提供了展望。
更新日期:2024-08-22
中文翻译:
通过膨胀石墨基水合盐提高采矿业中聚氨酯填充材料的安全性和热稳定性
利用聚氨酯泡沫材料(PUF)密封煤裂隙面临着重大挑战,因为反应过程中会产生大量热量,可能会加速火灾。为了研究这个问题,我们提出了一种新颖的低热聚合机制,通过结合水合盐相变复合材料,该复合材料可以有效吸收聚合热,同时使用膨胀石墨(EG)封装液态水。我们的研究结果表明,集成 10% EG-6 无泄漏相变材料可有效将反应温度降低至更安全的 91.4 °C,确保对材料固有特性的影响最小。通过 TGA 和原位红外实验进行的全面分析表明,改性 PUF 的热力学特征温度点显着升高了 17 °C。此外,我们还开发了PUF和煤的混合燃烧模型,以研究聚氨酯在矿井充填状态下发生火灾时的气体生成模式。具体来说,PUF的引入减少了O2消耗和CO产生,同时增加了CO2和C2H4产量,这与井下监测的碳烃气体增加的实际情况一致。这些发现表明两者在低温氧化阶段之间存在协同、互利的关系。该研究为煤矿用高分子材料的发展和实际充填的安全应用提供了展望。