当前位置:
X-MOL 学术
›
Urban Clim.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Stable isotope compositions, source apportionment and transformation processes of carbonaceous aerosols in PM10 in the urban city of Hyderabad, India
Urban Climate ( IF 6.0 ) Pub Date : 2024-08-20 , DOI: 10.1016/j.uclim.2024.102101 Pradeep Attri , Devleena Mani , Siddhartha Sarkar , Sanjeev Kumar , Prashant Hegde
Urban Climate ( IF 6.0 ) Pub Date : 2024-08-20 , DOI: 10.1016/j.uclim.2024.102101 Pradeep Attri , Devleena Mani , Siddhartha Sarkar , Sanjeev Kumar , Prashant Hegde
This study apportions sources of carbonaceous aerosols using isotopic characteristics of total carbon (TC) and elemental carbon (EC) in PM10 aerosols using filter-based CTO-375 method for pre-monsoon (summer), post-monsoon, and winter (2019–2021) over Hyderabad, India. Highest secondary organic carbon, SOC (primary organic carbon, POC) of 13.78 ± 10.25 (7.87 ± 2.48) μg/m3 was during post-monsoon 2020 (2019), while lowest was 8.90 ± 5.55 (4.18 ± 0.92) μg/m3 during pre-monsoon 2021 (post-monsoon 2020), respectively. Average effective carbon ratio (ECR) > 1 indicates dominance of light scattering aerosols during pre-monsoon and post-monsoon. δ13 CTC and δ13 CEC varied from – 28.1 to – 24.7 ‰ (avg. – 26.5 ± 0.7) and - 32.5 to – 24.6 ‰ (avg. – 27.4 ± 1.1), indicating contribution from C3 plant burning and liquid fuel combustion. Positive value of δ13 COC – δ13 CEC and heavier δ13 CTC, along with gradual enrichment in δ13 CTC and δ13 CEC from December 2020 to March 2021, suggested photochemical aging of carbonaceous aerosols. Lighter δ13 CTC and OC/EC > 4 for all seasons indicates dominance of biomass burning (wood and crop residue burning), photochemical oxidation and secondary organic aerosol (SOA) formation. The tropical study experiences dominance of lighter δ13 CEC compared to subtropical, high latitude regions.
中文翻译:
印度海得拉巴市区 PM10 碳质气溶胶稳定同位素组成、来源解析及转化过程
本研究使用基于过滤器的 CTO-375 方法,利用 PM10 气溶胶中总碳 (TC) 和元素碳 (EC) 的同位素特征,对季风前(夏季)、季风后和冬季(2019 年 - 2021)在印度海得拉巴上空。次生有机碳 SOC(初级有机碳,POC)最高为 13.78 ± 10.25 (7.87 ± 2.48) μg/m3 在 2020 年季风后(2019 年),最低为 8.90 ± 5.55 (4.18 ± 0.92) μg/m3分别为 2021 年季风前(2020 年季风后)。平均有效碳比率 (ECR) > 1 表明季风前和季风后期间光散射气溶胶占主导地位。 δ13CTC 和 δ13CEC 变化范围为 – 28.1 至 – 24.7 ‰(平均值 – 26.5 ± 0.7)和 – 32.5 至 – 24.6 ‰(平均值 – 27.4 ± 1.1),表明来自 C3 装置燃烧和液体燃料燃烧的贡献。 δ13COC – δ13CEC 和较重的 δ13CTC 的正值,以及 2020 年 12 月至 2021 年 3 月 δ13CTC 和 δ13CEC 的逐渐富集,表明碳质气溶胶存在光化学老化。所有季节较轻的 δ13CTC 和 OC/EC > 4 表明生物质燃烧(木材和农作物残留物燃烧)、光化学氧化和二次有机气溶胶 (SOA) 形成占主导地位。与亚热带、高纬度地区相比,热带研究发现较轻的 δ13CEC 占主导地位。
更新日期:2024-08-20
中文翻译:
印度海得拉巴市区 PM10 碳质气溶胶稳定同位素组成、来源解析及转化过程
本研究使用基于过滤器的 CTO-375 方法,利用 PM10 气溶胶中总碳 (TC) 和元素碳 (EC) 的同位素特征,对季风前(夏季)、季风后和冬季(2019 年 - 2021)在印度海得拉巴上空。次生有机碳 SOC(初级有机碳,POC)最高为 13.78 ± 10.25 (7.87 ± 2.48) μg/m3 在 2020 年季风后(2019 年),最低为 8.90 ± 5.55 (4.18 ± 0.92) μg/m3分别为 2021 年季风前(2020 年季风后)。平均有效碳比率 (ECR) > 1 表明季风前和季风后期间光散射气溶胶占主导地位。 δ13CTC 和 δ13CEC 变化范围为 – 28.1 至 – 24.7 ‰(平均值 – 26.5 ± 0.7)和 – 32.5 至 – 24.6 ‰(平均值 – 27.4 ± 1.1),表明来自 C3 装置燃烧和液体燃料燃烧的贡献。 δ13COC – δ13CEC 和较重的 δ13CTC 的正值,以及 2020 年 12 月至 2021 年 3 月 δ13CTC 和 δ13CEC 的逐渐富集,表明碳质气溶胶存在光化学老化。所有季节较轻的 δ13CTC 和 OC/EC > 4 表明生物质燃烧(木材和农作物残留物燃烧)、光化学氧化和二次有机气溶胶 (SOA) 形成占主导地位。与亚热带、高纬度地区相比,热带研究发现较轻的 δ13CEC 占主导地位。