当前位置:
X-MOL 学术
›
Appl. Mathmat. Model.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Modeling the impact of terrain surface deformation on drag force using discrete element method and empirical formulation
Applied Mathematical Modelling ( IF 4.4 ) Pub Date : 2024-08-13 , DOI: 10.1016/j.apm.2024.115636 Liu Jiaxin , Yang Tian , Zhongkui Wang , Longchuan Li , Shugen Ma
Applied Mathematical Modelling ( IF 4.4 ) Pub Date : 2024-08-13 , DOI: 10.1016/j.apm.2024.115636 Liu Jiaxin , Yang Tian , Zhongkui Wang , Longchuan Li , Shugen Ma
Understanding motion-induced terrain deformation is essential for improving predictive models in geotechnical engineering, infrastructure development, and robotics. The existing analysis assumes a uniform and unchanged environment and lacks a description of the terrain deformation induced by motion, which is particularly significant when the grains are loosely packed. To address this gap, we performed numerical investigations to mathematically model the changes in the surrounding environment and their corresponding effects on resistance. Specifically, we examined the response of granular materials and the energy variation of the particles during motion. Increased energy in the direction of motion was categorized as influences above or below the medium surface. Aligned with the influencing factors, two variables were considered to quantify the impact on the drag force. Building upon the energy analysis and the framework of Resistive Force Theory, we proposed a drag force model for buried motion in loose granular terrain. Compared with the experimental data, the average predictive error decreased from 17.8% to less than 2.7%. Our study provides a feasible approach for incorporating the effects of terrain deformation into a drag force model, thereby enhancing the accuracy and contributing to the development of granular locomotion.
中文翻译:
使用离散元方法和经验公式模拟地形表面变形对阻力的影响
了解运动引起的地形变形对于改进岩土工程、基础设施开发和机器人技术的预测模型至关重要。现有的分析假设环境均匀且不变,缺乏对运动引起的地形变形的描述,这在颗粒松散堆积时尤其重要。为了解决这一差距,我们进行了数值研究,对周围环境的变化及其对阻力的相应影响进行了数学建模。具体来说,我们检查了颗粒材料的响应以及运动过程中颗粒的能量变化。运动方向上增加的能量被归类为介质表面上方或下方的影响。与影响因素相一致,考虑两个变量来量化对阻力的影响。基于能量分析和阻力理论框架,我们提出了松散粒状地形中掩埋运动的拖曳力模型。与实验数据相比,平均预测误差从17.8%下降到2.7%以内。我们的研究提供了一种将地形变形的影响纳入阻力模型的可行方法,从而提高了精度并有助于粒状运动的发展。
更新日期:2024-08-13
中文翻译:
使用离散元方法和经验公式模拟地形表面变形对阻力的影响
了解运动引起的地形变形对于改进岩土工程、基础设施开发和机器人技术的预测模型至关重要。现有的分析假设环境均匀且不变,缺乏对运动引起的地形变形的描述,这在颗粒松散堆积时尤其重要。为了解决这一差距,我们进行了数值研究,对周围环境的变化及其对阻力的相应影响进行了数学建模。具体来说,我们检查了颗粒材料的响应以及运动过程中颗粒的能量变化。运动方向上增加的能量被归类为介质表面上方或下方的影响。与影响因素相一致,考虑两个变量来量化对阻力的影响。基于能量分析和阻力理论框架,我们提出了松散粒状地形中掩埋运动的拖曳力模型。与实验数据相比,平均预测误差从17.8%下降到2.7%以内。我们的研究提供了一种将地形变形的影响纳入阻力模型的可行方法,从而提高了精度并有助于粒状运动的发展。