当前位置:
X-MOL 学术
›
Robot. Comput.-Integr. Manuf.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Online dual robot–human collaboration trajectory generation by convex optimization
Robotics and Computer-Integrated Manufacturing ( IF 9.1 ) Pub Date : 2024-08-19 , DOI: 10.1016/j.rcim.2024.102850 Lai Wei , Yanzhe Wang , Yibo Hu , Tin Lun Lam , Yanding Wei
Robotics and Computer-Integrated Manufacturing ( IF 9.1 ) Pub Date : 2024-08-19 , DOI: 10.1016/j.rcim.2024.102850 Lai Wei , Yanzhe Wang , Yibo Hu , Tin Lun Lam , Yanding Wei
For dynamic collision-free trajectory planning in dual-robot and human collaborative tasks, this paper develops an online dual-robot Mutual Collision Avoidance (MCA) scheme based on convex optimization. A novel convex optimization formulation model, named Disciplined Convex programming by Shifting reference paths (DCS), is proposed for solving the single-robot trajectory optimization problem. Furthermore, a new dual-robot trajectory convex optimization algorithm is presented for online adjustment of the dual-robot trajectories according to the collaborative task priority. The overall pipeline, named DCS-MCA, generates collision-free and time-optimal dual-robot trajectories, while prioritizing the task accessibility of the high-priority robot. Simulation experiments demonstrate that DCS exhibits comparable performance to the current state-of-the-art single-robot motion planner, while the DCS-MCA outperforms common algorithms by up to 30% in time optimality for dual-robot collaborative tasks. The feasibility and dynamic performance of the proposed approach are further validated in a real collaborative cell, illustrating its suitability for collaborative dual-robot tasks in moderately dynamic environments.
中文翻译:
通过凸优化在线生成双机器人-人类协作轨迹
针对双机器人与人类协作任务中的动态无碰撞轨迹规划,本文开发了一种基于凸优化的在线双机器人相互碰撞避免(MCA)方案。提出了一种新颖的凸优化公式模型,称为通过移动参考路径(DCS)的纪律凸规划来解决单机器人轨迹优化问题。此外,提出了一种新的双机器人轨迹凸优化算法,用于根据协作任务优先级在线调整双机器人轨迹。整个管道名为 DCS-MCA,生成无碰撞且时间最优的双机器人轨迹,同时优先考虑高优先级机器人的任务可访问性。仿真实验表明,DCS 的性能与当前最先进的单机器人运动规划器相当,而 DCS-MCA 在双机器人协作任务的时间最优性方面比常见算法高出 30%。该方法的可行性和动态性能在真实的协作单元中得到了进一步验证,说明其适用于中等动态环境中的协作双机器人任务。
更新日期:2024-08-19
中文翻译:
通过凸优化在线生成双机器人-人类协作轨迹
针对双机器人与人类协作任务中的动态无碰撞轨迹规划,本文开发了一种基于凸优化的在线双机器人相互碰撞避免(MCA)方案。提出了一种新颖的凸优化公式模型,称为通过移动参考路径(DCS)的纪律凸规划来解决单机器人轨迹优化问题。此外,提出了一种新的双机器人轨迹凸优化算法,用于根据协作任务优先级在线调整双机器人轨迹。整个管道名为 DCS-MCA,生成无碰撞且时间最优的双机器人轨迹,同时优先考虑高优先级机器人的任务可访问性。仿真实验表明,DCS 的性能与当前最先进的单机器人运动规划器相当,而 DCS-MCA 在双机器人协作任务的时间最优性方面比常见算法高出 30%。该方法的可行性和动态性能在真实的协作单元中得到了进一步验证,说明其适用于中等动态环境中的协作双机器人任务。