当前位置:
X-MOL 学术
›
Chem. Eng. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Fe3 cluster-anchored monolayer MoS2 for direct deoxygenation of phenol: Catalyst design and activation mechanism
Chemical Engineering Science ( IF 4.1 ) Pub Date : 2024-08-21 , DOI: 10.1016/j.ces.2024.120621 Jiali Ma , Xin Wang , Jiehang Wei , Hongqiang Xia , Yingtao Liu , Xingman Liu
Chemical Engineering Science ( IF 4.1 ) Pub Date : 2024-08-21 , DOI: 10.1016/j.ces.2024.120621 Jiali Ma , Xin Wang , Jiehang Wei , Hongqiang Xia , Yingtao Liu , Xingman Liu
This study introduces a novel Fe@MoS catalyst for the direct deoxygenation of phenol, key to lignin’s catalytic conversion into aromatic hydrocarbon bio-oil. Through density functional theory (DFT) calculations, we have dissected the electron transfer and activation barrier for the CO bond’s direct cleavage over the Fe cluster. A pivotal activation mechanism was uncovered, characterized by the formation and occupation of -π* orbitals, which facilitates electron transfer from Fe′s d orbital to phenol’s CO π* orbital. This enhanced catalytic activity is revealed to stem from the spin polarization and the reduced oxidation state of the Fe cluster, as corroborated by DOS and Bader charge analysis. Moreover, the study compares the performance of Fe@MoS with that of heterogeneous active sites, such as 3Fe@MoS and Fe-3@MoS, and finds that the homogeneous active site of Fe@MoS is more favorable for phenol DDO in terms of both kinetic and thermodynamic aspects.
中文翻译:
Fe3簇锚定单层MoS2用于苯酚直接脱氧:催化剂设计和活化机制
本研究介绍了一种新型 Fe@MoS 催化剂,用于苯酚的直接脱氧,这是木质素催化转化为芳烃生物油的关键。通过密度泛函理论(DFT)计算,我们剖析了 Fe 簇上 CO 键直接裂解的电子转移和活化势垒。揭示了一个关键的激活机制,其特征是-π*轨道的形成和占据,促进电子从Fe'sd轨道转移到苯酚的CO π*轨道。 DOS 和 Bader 电荷分析证实,这种增强的催化活性源于 Fe 簇的自旋极化和氧化态还原。此外,研究将Fe@MoS与3Fe@MoS和Fe-3@MoS等异质活性位点的性能进行了比较,发现Fe@MoS的均质活性位点在以下方面更有利于苯酚DDO:动力学和热力学方面。
更新日期:2024-08-21
中文翻译:
Fe3簇锚定单层MoS2用于苯酚直接脱氧:催化剂设计和活化机制
本研究介绍了一种新型 Fe@MoS 催化剂,用于苯酚的直接脱氧,这是木质素催化转化为芳烃生物油的关键。通过密度泛函理论(DFT)计算,我们剖析了 Fe 簇上 CO 键直接裂解的电子转移和活化势垒。揭示了一个关键的激活机制,其特征是-π*轨道的形成和占据,促进电子从Fe'sd轨道转移到苯酚的CO π*轨道。 DOS 和 Bader 电荷分析证实,这种增强的催化活性源于 Fe 簇的自旋极化和氧化态还原。此外,研究将Fe@MoS与3Fe@MoS和Fe-3@MoS等异质活性位点的性能进行了比较,发现Fe@MoS的均质活性位点在以下方面更有利于苯酚DDO:动力学和热力学方面。