当前位置:
X-MOL 学术
›
J. Comb. Theory A
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Cluster braid groups of Coxeter-Dynkin diagrams
Journal of Combinatorial Theory Series A ( IF 0.9 ) Pub Date : 2024-07-10 , DOI: 10.1016/j.jcta.2024.105935 Zhe Han , Ping He , Yu Qiu
Journal of Combinatorial Theory Series A ( IF 0.9 ) Pub Date : 2024-07-10 , DOI: 10.1016/j.jcta.2024.105935 Zhe Han , Ping He , Yu Qiu
Cluster exchange groupoids are introduced by King-Qiu as an enhancement of cluster exchange graphs to study stability conditions and quadratic differentials. In this paper, we introduce the cluster exchange groupoid for any finite Coxeter-Dynkin diagram Δ and show that its fundamental group is isomorphic to the corresponding braid group associated with Δ.
中文翻译:
Coxeter-Dynkin 图的簇辫子组
King-Qiu 引入簇交换群图作为簇交换图的增强,用于研究稳定性条件和二次微分。在本文中,我们介绍了任何有限 Coxeter-Dynkin 图 Δ 的簇交换群群,并证明其基本群与与 Δ 相关的相应辫子群同构。
更新日期:2024-07-10
中文翻译:
Coxeter-Dynkin 图的簇辫子组
King-Qiu 引入簇交换群图作为簇交换图的增强,用于研究稳定性条件和二次微分。在本文中,我们介绍了任何有限 Coxeter-Dynkin 图 Δ 的簇交换群群,并证明其基本群与与 Δ 相关的相应辫子群同构。