当前位置:
X-MOL 学术
›
Macromolecules
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
In Situ Adhesive and Crack Detectable Polyurea Adhesive at Extremely Low Temperatures
Macromolecules ( IF 5.1 ) Pub Date : 2024-08-24 , DOI: 10.1021/acs.macromol.4c01430 Lijing Han 1 , Jiacheng Xu 1 , Lixia Li 1, 2 , Jiajia Lin 1 , Kailu Ren 1 , Kai Yang 1 , Aiguo Wu 1 , Ruoyu Zhang 1
Macromolecules ( IF 5.1 ) Pub Date : 2024-08-24 , DOI: 10.1021/acs.macromol.4c01430 Lijing Han 1 , Jiacheng Xu 1 , Lixia Li 1, 2 , Jiajia Lin 1 , Kailu Ren 1 , Kai Yang 1 , Aiguo Wu 1 , Ruoyu Zhang 1
Affiliation
Adhesives that can in situ adhere to substrates and long-term maintain robust adhesion at extremely low temperatures are highly desired in fields such as aerospace, polar regions, and biological industries. Unfortunately, developing such adhesives has been a daunting task so far, as most polymers tend to freeze in such an environment, leading to poor interfacial wetting, serious deformation, and significant fragileness. To address this challenge, a series of poly(dimethylsiloxane)-based polyurea adhesives were synthesized through a non-isocyanate route. This adhesive exhibited exceptional segmental dynamics and toughness at extremely low temperatures, as demonstrated by the continuous evolution of ordered and disordered hydrogen bonds associated with C═O until the test limit of −170 °C and unprecedented bendability in liquid nitrogen (LN, −196 °C). It could adhere firmly and reversibly to various substrates in LN, achieving an in situ adhesion strength of as high as 1.6 MPa on steel. Evenly important, this adhesive exhibited outstanding long-term tolerance in LN with an ultrahigh adhesion strength of 18.3 MPa after 30 days of immersion. Surprisingly, long-persistent phosphorescence lasting for ∼7s was also observed in LN. This study reduced the adhesion temperature of adhesives to −196 °C while enhancing the in situ adhesion strength in LN to the MPa level.
中文翻译:
极低温度下的原位粘合剂和可检测裂纹的聚脲粘合剂
航空航天、极地和生物工业等领域非常需要能够原位粘附到基材上并在极低温度下长期保持牢固粘附力的粘合剂。不幸的是,到目前为止,开发这种粘合剂一直是一项艰巨的任务,因为大多数聚合物在这种环境下往往会冻结,导致界面润湿不良、严重变形和显着脆性。为了应对这一挑战,通过非异氰酸酯路线合成了一系列聚(二甲基硅氧烷)基聚脲粘合剂。这种粘合剂在极低的温度下表现出优异的链段动力学和韧性,这一点通过与 C=O 相关的有序和无序氢键的不断演化直至达到 -170 °C 的测试极限和在液氮中前所未有的弯曲性(LN,-196 ℃)。它可以在液氮中牢固且可逆地粘附到各种基材上,在钢材上的原位粘附强度高达1.6 MPa。同样重要的是,该粘合剂在液氮中表现出出色的长期耐受性,浸泡 30 天后粘合强度高达 18.3 MPa。令人惊讶的是,在 LN 中也观察到持续约 7 秒的长持续磷光。这项研究将粘合剂的粘合温度降低至-196 °C,同时将液氮中的原位粘合强度提高至 MPa 水平。
更新日期:2024-08-24
中文翻译:
极低温度下的原位粘合剂和可检测裂纹的聚脲粘合剂
航空航天、极地和生物工业等领域非常需要能够原位粘附到基材上并在极低温度下长期保持牢固粘附力的粘合剂。不幸的是,到目前为止,开发这种粘合剂一直是一项艰巨的任务,因为大多数聚合物在这种环境下往往会冻结,导致界面润湿不良、严重变形和显着脆性。为了应对这一挑战,通过非异氰酸酯路线合成了一系列聚(二甲基硅氧烷)基聚脲粘合剂。这种粘合剂在极低的温度下表现出优异的链段动力学和韧性,这一点通过与 C=O 相关的有序和无序氢键的不断演化直至达到 -170 °C 的测试极限和在液氮中前所未有的弯曲性(LN,-196 ℃)。它可以在液氮中牢固且可逆地粘附到各种基材上,在钢材上的原位粘附强度高达1.6 MPa。同样重要的是,该粘合剂在液氮中表现出出色的长期耐受性,浸泡 30 天后粘合强度高达 18.3 MPa。令人惊讶的是,在 LN 中也观察到持续约 7 秒的长持续磷光。这项研究将粘合剂的粘合温度降低至-196 °C,同时将液氮中的原位粘合强度提高至 MPa 水平。