当前位置: X-MOL 学术ACS Photonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Unveiling the Mechanism of Phonon-Polariton Damping in α-MoO3
ACS Photonics ( IF 6.5 ) Pub Date : 2024-08-23 , DOI: 10.1021/acsphotonics.4c00485
Javier Taboada-Gutiérrez 1 , Yixi Zhou 2 , Ana I. F. Tresguerres-Mata 3 , Christian Lanza 3 , Abel Martínez-Suárez 3 , Gonzalo Álvarez-Pérez 3, 4 , Jiahua Duan 3, 4 , José Ignacio Martín 3, 4 , María Vélez 3, 4 , Iván Prieto 5 , Adrien Bercher 1 , Jérémie Teyssier 1 , Ion Errea 6, 7, 8 , Alexey Y. Nikitin 8, 9 , Javier Martín-Sánchez 3, 4 , Alexey B. Kuzmenko 1 , Pablo Alonso-González 3, 4
Affiliation  

Phonon polaritons (PhPs), light coupled to lattice vibrations, in the highly anisotropic polar layered material molybdenum trioxide (α-MoO3) are currently the focus of intense research efforts due to their extreme subwavelength field confinement, directional propagation, and unprecedented low losses. Nevertheless, prior research has primarily concentrated on exploiting the squeezing and steering capabilities of α-MoO3 PhPs, without inquiring much into the dominant microscopic mechanism that determines their long lifetimes, which is key for their implementation in nanophotonic applications. This study delves into the fundamental processes that govern PhP damping in α-MoO3 by combining ab initio calculations with scattering-type scanning near-field optical microscopy (s-SNOM) and Fourier transform infrared (FTIR) spectroscopy measurements across a broad temperature range (8–300 K). The remarkable agreement between our theoretical predictions and experimental observations allows us to identify third-order anharmonic phonon–phonon scattering as the main damping mechanism of α-MoO3 PhPs. These findings shed light on the fundamental limits of low-loss PhPs, which is a crucial factor for assessing their implementation into nanophotonic devices.

中文翻译:


揭示 α-MoO3 中声子极化子阻尼机制



高度各向异性极性层状材料三氧化钼 (α-MoO 3 ) 中的光与晶格振动耦合的声子极化子 (PhP) 由于其极端亚波长场限制、定向传播和前所未有的低损耗而成为目前研究工作的重点。然而,先前的研究主要集中在利用 α-MoO 3 PhP 的挤压和转向能力,而没有深入探究决定其长寿命的主要微观机制,而这对于它们在纳米光子应用中的实现至关重要。这项研究通过将从头计算与散射型扫描近场光学显微镜 (s-SNOM) 和宽温度范围内的傅里叶变换红外 (FTIR) 光谱测量相结合,深入研究了控制 α-MoO 3中 PhP 阻尼的基本过程(8–300 K)。我们的理论预测和实验观察之间的显着一致性使我们能够确定三阶非谐声子-声子散射是 α-MoO 3 PhP 的主要阻尼机制。这些发现揭示了低损耗 PhP 的基本限制,这是评估其在纳米光子器件中的实施的关键因素。
更新日期:2024-08-23
down
wechat
bug