当前位置: X-MOL 学术J. Psychopathol. Clin. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Identifying factors impacting missingness within smartphone-based research: Implications for intensive longitudinal studies of adolescent suicidal thoughts and behaviors.
Journal of Psychopathology and Clinical Science ( IF 3.1 ) Pub Date : 2024-07-18 , DOI: 10.1037/abn0000930
Paul A Bloom 1 , Ranqing Lan 1 , Hanga Galfalvy 1 , Ying Liu 1 , Alma Bitran 1 , Karla Joyce 2 , Katherine Durham 1 , Giovanna Porta 3 , Jaclyn S Kirshenbaum 1 , Rahil Kamath 1 , Trinity C Tse 1 , Lauren Chernick 4 , Lauren E Kahn 5 , Ryann Crowley 5 , Esha Trivedi 1 , David Brent 2 , Nicholas B Allen 6 , David Pagliaccio 1 , Randy P Auerbach 1
Affiliation  

Intensive longitudinal research-including experience sampling and smartphone sensor monitoring-has potential for identifying proximal risk factors for psychopathology, including suicidal thoughts and behaviors (STB). Yet, missing data can complicate analysis and interpretation. This study aimed to address whether clinical and study design factors are associated with missing data and whether missingness predicts changes in symptom severity or STB. Adolescents ages 13- to 18 years old (N = 179) reporting depressive, anxiety, and/or substance use disorders were enrolled; 65% reported current suicidal ideation and 29% indicated a past-year attempt. Passively acquired smartphone sensor data (e.g., global positioning system, accelerometer, and keyboard inputs), daily mood surveys, and weekly suicidal ideation surveys were collected during the 6-month study period using the effortless assessment research system smartphone app. First, acquisition of passive smartphone sensor data (with data on ∼80% of days across the whole sample) was strongly associated with survey data acquisition on the same day (∼44% of days). Second, STB and psychiatric symptoms were largely not associated with missing data. Rather, temporal features (e.g., length of time in study, weekends, and summer) explained more missingness of survey and passive smartphone sensor data. Last, within-participant changes in missing data over time neither followed nor predicted subsequent change in suicidal ideation and psychiatric symptoms. Findings indicate that considering technical and study design factors impacting missingness is critical and highlight several factors that should be addressed to maximize the validity of clinical interpretations in intensive longitudinal research. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

中文翻译:


识别基于智能手机的研究中影响缺失的因素:对青少年自杀想法和行为的深入纵向研究的影响。



深入的纵向研究(包括经验采样和智能手机传感器监测)有可能识别精神病理学的近端危险因素,包括自杀想法和行为(STB)。然而,缺失的数据可能会使分析和解释变得复杂。本研究旨在探讨临床和研究设计因素是否与缺失数据相关,以及缺失是否可以预测症状严重程度或 STB 的变化。报告抑郁、焦虑和/或物质使用障碍的 13 至 18 岁青少年 (N = 179) 被纳入研究; 65% 的人表示目前有自杀意念,29% 的人表示去年曾尝试过自杀。在 6 个月的研究期间,使用轻松评估研究系统智能手机应用程序收集被动获取的智能手机传感器数据(例如,全球定位系统、加速计和键盘输入)、每日情绪调查和每周自杀意念调查。首先,被动智能手机传感器数据的获取(整个样本中约 80% 的天数的数据)与同一天的调查数据获取(约 44% 的天数)密切相关。其次,STB 和精神症状很大程度上与缺失数据无关。相反,时间特征(例如,学习时间长度、周末和夏季)解释了调查和被动智能手机传感器数据的更多缺失。最后,参与者内部缺失数据随时间的变化既不能跟随也不能预测自杀意念和精神症状的后续变化。研究结果表明,考虑影响缺失的技术和研究设计因素至关重要,并强调了应解决的几个因素,以最大限度地提高强化纵向研究中临床解释的有效性。 (PsycInfo 数据库记录 (c) 2024 APA,保留所有权利)。
更新日期:2024-07-18
down
wechat
bug