当前位置:
X-MOL 学术
›
J. Adv. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A potential CO2 carrier to improve the utilization of HCO3– by plant-soil ecosystem for carbon sink enhancement
Journal of Advanced Research ( IF 11.4 ) Pub Date : 2024-08-16 , DOI: 10.1016/j.jare.2024.08.022 Feihong Liang 1 , Shihui Wei 2 , Long Ji 2 , Shuiping Yan 2
中文翻译:
一种潜在的 CO2 载体,可以提高植物-土壤生态系统对 HCO3 的利用,以增强碳汇
改善根际 HCO3– 植物-土壤生态系统的利用可以增加陆地生态系统的碳汇效应。然而,为避免其对作物生长的生理压力,允许添加到根际土壤中的 HCO3– 的剂量总是很低(即 <5–20 mol/m3)。
促进植物利用相对高浓度的 HCO3–,以实现陆地碳汇增强。
在本研究中,以番茄为模式植物,研究了直接补充沼液携带到植物根际的高浓度 HCO3– 的可行性。
富含 CO2 的沼液被验证为潜在的 CO2 载体,可将根际 HCO3– 浓度提高到 36 mol/m3,而不会引起生理应激。大约 88.3% 的 HCO3– 由沼液携带被番茄土壤生态系统成功固定,其中 43.8% 的 HCO3– 被番茄根同化用于新陈代谢,0.5 ‰ 的 HCO3– 被微生物用于通过暗固定合成细胞结构的物质,44.4% 的 HCO3– 保留在土壤中。其余的 HCO3– (∼11.7 %) 可能通过与 H+ 反应逃逸到大气中。相应地,番茄土壤生态系统在番茄生长周期中的固碳量增加了 150.1 g-CO2/m2-土壤。至于采用本研究中提出的策略来种植番茄的全球国家,每年可以获得约 1031.1 kt-C 的额外土壤碳汇(即每公顷土壤额外 0.21 吨碳)。
这将与 COP21 上启动的土壤碳汇增强目标一致。此外,人均 GDP 较低的地区在采用富含 CO2 的沼液灌溉后,很容易实现农业用地CO2 排放的高减排潜力。
更新日期:2024-08-16
Journal of Advanced Research ( IF 11.4 ) Pub Date : 2024-08-16 , DOI: 10.1016/j.jare.2024.08.022 Feihong Liang 1 , Shihui Wei 2 , Long Ji 2 , Shuiping Yan 2
Affiliation
Introduction
Improving the rhizospheric HCO3– utilization of plant-soil ecosystem could increase the carbon sink effect of terrestrial ecosystem. However, to avoid its physiological stress on the crop growth, the dosage of HCO3– allowed to add into the rhizosphere soil was always low (i.e., <5–20 mol/m3).Objectives
To facilitate the utilization of relatively high concentrations of HCO3– by plants in the pursuit of achieving terrestrial carbon sink enhancement.Methods
In this study, the feasibility of directly supplementing a high concentration HCO3– carried by the biogas slurry to the plant rhizosphere was investigated using the tomato as a model plant.Results
The CO2-rich biogas slurry was verified as a potential CO2 carrier to increase the rhizospheric HCO3– concentration to 36 mol/m3 without causing a physiological stress. About 88.3 % of HCO3– carried by biogas slurry was successfully fixed by tomato-soil ecosystem, in which 43.8 % of HCO3– was assimilated by tomato roots for the metabolism, 0.5 ‰ of HCO3– was used by microorganisms for substances synthesis of cell structure through dark fixation, and 44.4 % of HCO3– was retained in the soil. The rest of HCO3– (∼11.7 %) might escape into the atmosphere through the reaction with H+. Correspondingly, the carbon fixation of tomato-soil ecosystem increased by 150.1 g-CO2/m2-soil during a tomato growth cycle. As for the global countries that would adopt the strategy proposed in this study to cultivate the tomato, an extra carbon sink of soil with about 1031.1 kt-C per year (i.e., an additional 0.21 tons of carbon per hectare soil) could be obtained.Conclusion
This would be consistent with the goal of soil carbon sink enhancement launched at COP21. Furthermore, the regions with low GDP per capita may easily achieve a high reduction potential of CO2 emissions from the agricultural land after adopting the irrigation of CO2-rich biogas slurry.中文翻译:
一种潜在的 CO2 载体,可以提高植物-土壤生态系统对 HCO3 的利用,以增强碳汇
介绍
改善根际 HCO3– 植物-土壤生态系统的利用可以增加陆地生态系统的碳汇效应。然而,为避免其对作物生长的生理压力,允许添加到根际土壤中的 HCO3– 的剂量总是很低(即 <5–20 mol/m3)。
目标
促进植物利用相对高浓度的 HCO3–,以实现陆地碳汇增强。
方法
在本研究中,以番茄为模式植物,研究了直接补充沼液携带到植物根际的高浓度 HCO3– 的可行性。
结果
富含 CO2 的沼液被验证为潜在的 CO2 载体,可将根际 HCO3– 浓度提高到 36 mol/m3,而不会引起生理应激。大约 88.3% 的 HCO3– 由沼液携带被番茄土壤生态系统成功固定,其中 43.8% 的 HCO3– 被番茄根同化用于新陈代谢,0.5 ‰ 的 HCO3– 被微生物用于通过暗固定合成细胞结构的物质,44.4% 的 HCO3– 保留在土壤中。其余的 HCO3– (∼11.7 %) 可能通过与 H+ 反应逃逸到大气中。相应地,番茄土壤生态系统在番茄生长周期中的固碳量增加了 150.1 g-CO2/m2-土壤。至于采用本研究中提出的策略来种植番茄的全球国家,每年可以获得约 1031.1 kt-C 的额外土壤碳汇(即每公顷土壤额外 0.21 吨碳)。
结论
这将与 COP21 上启动的土壤碳汇增强目标一致。此外,人均 GDP 较低的地区在采用富含 CO2 的沼液灌溉后,很容易实现农业用地CO2 排放的高减排潜力。