当前位置: X-MOL 学术Energy Convers. Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Green hydrogen production plants: A techno-economic review
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2024-08-19 , DOI: 10.1016/j.enconman.2024.118907
Rawan A. Abdelsalam , Moataz Mohamed , Hany E.Z. Farag , Ehab F. El-Saadany

Green hydrogen stands as a promising clean energy carrier with potential net-zero greenhouse gas emissions. However, different system-level configurations for green hydrogen production yield different levels of efficiency, cost, and maturity, necessitating a comprehensive assessment. This review evaluates the components of hydrogen production plants from technical and economic perspectives. The study examines six renewable energy sources—solar photovoltaics, solar thermal, wind, biomass, hydro, and geothermal—alongside three types of electrolyzers (alkaline, proton exchange membrane, and solid oxide electrolyzer cells) and five hydrogen storage methods (compressed hydrogen, liquid hydrogen, metal hydrides, ammonia, and liquid organic hydrogen carriers). A comprehensive assessment of 90 potential system configurations is conducted across five key performance indicators: the overall system cost, efficiency, emissions, production scale and technological maturity. The most cost-effective configurations involve solar photovoltaics or wind turbines combined with alkaline electrolyzers and compressed hydrogen storage. For enhanced system efficiency, geothermal sources or biomass paired with solid oxide electrolyzer cells utilizing waste heat show significant promise. The top technologically mature systems feature combinations of solar photovoltaics, wind turbines, geothermal, or hydroelectric power with alkaline electrolyzers using compressed hydrogen or ammonia storage. The highest hydrogen production scales are observed in systems with solar PV, wind, or hydro power, paired with alkaline or PEM electrolyzers and ammonia storage. Configurations using hydro, geothermal, wind, or solar thermal energy sources paired with alkaline electrolyzers, and compressed hydrogen or liquid organic hydrogen carriers yield the lowest life cycle GHG emissions. These insights provide valuable decision-making tools for researchers, business developers, and policymakers, guiding the optimization of system efficiency and the reduction of system costs.

中文翻译:


绿色制氢工厂:技术经济回顾



绿色氢是一种有前途的清洁能源载体,具有潜在的温室气体净零排放。然而,不同的绿色制氢系统级配置会产生不同程度的效率、成本和成熟度,需要进行全面评估。本综述从技术和经济角度评估了制氢装置的组成部分。该研究研究了六种可再生能源——太阳能光伏、太阳热能、风能、生物质、水力和地热能——以及三种类型的电解槽(碱性、质子交换膜和固体氧化物电解槽电池)和五种储氢方法(压缩氢、液态氢、金属氢化物、氨和液态有机氢载体)。对 90 种潜在系统配置的综合评估涉及五个关键绩效指标:总体系统成本、效率、排放​​、生产规模和技术成熟度。最具成本效益的配置包括太阳能光伏发电或风力涡轮机与碱性电解槽和压缩氢存储的结合。为了提高系统效率,地热源或生物质与利用废热的固体氧化物电解槽电池相结合显示出巨大的前景。技术成熟的顶级系统将太阳能光伏发电、风力涡轮机、地热能或水力发电与使用压缩氢或氨储存的碱性电解槽相结合。在太阳能光伏、风能或水力发电以及碱性或质子交换膜电解槽和氨存储配对的系统中观察到最高的氢气生产规模。 使用水力、地热、风能或太阳能热能源与碱性电解槽以及压缩氢或液态有机氢载体相结合的配置可产生最低的生命周期温室气体排放。这些见解为研究人员、业务开发人员和政策制定者提供了宝贵的决策工具,指导系统效率的优化和系统成本的降低。
更新日期:2024-08-19
down
wechat
bug