当前位置:
X-MOL 学术
›
Energy Econ.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Assessing optimized time-of-use pricing for electric vehicle charging in deep vehicle-grid integration system
Energy Economics ( IF 13.6 ) Pub Date : 2024-08-20 , DOI: 10.1016/j.eneco.2024.107852 So Young Yang , JongRoul Woo , Wonjong Lee
Energy Economics ( IF 13.6 ) Pub Date : 2024-08-20 , DOI: 10.1016/j.eneco.2024.107852 So Young Yang , JongRoul Woo , Wonjong Lee
The expansion of electric vehicles (EVs) and renewable energy (RE) are the two major strategies countries are adopting to achieve energy transition. However, the discrepancy between intermittent RE generation and EV charging load may impose burden on the RE-dominant power grid of the future. For the issue, Time-of-Use (ToU) pricing for EV charging has been widely discussed or adopted as its potential is well acknowledged by previous studies. While ToU mechanism has been primarily based on drivers' price-responsive behavior, this research highlights that EV charging decisions are influenced by various factors beyond price, such as time of a day, charger accessibility and waiting time. Here, we conducted the discrete choice experiment to measure drivers' preferences for EV charging, and developed an EV charging behavior model which incorporated drivers' situational-responsiveness as well as price-responsiveness. Also, the model was used to design optimal ToU tariffs to minimize net-load variation. The results showed that strategic ToU tariffs can shift EV charging load, but achieving desirable load shifts requires a significant price gap. Additionally, combining ToU pricing with strategic deployment of charging infrastructure can effectively shift EV charging load, reducing RE curtailments by 22.14%, and LNG generation and carbon emissions by 10.12%, compared to the Business-as-Usual (BaU) scenario with current tariff rates. Thus, this study highlights the importance of flexible EV charging pricing and the importance of considering charging infrastructure deployment when designing EV ToU pricing.
中文翻译:
在深度车网集成系统中评估电动汽车充电的优化使用时间定价
电动汽车 (EV) 和可再生能源 (RE) 的扩张是各国为实现能源转型而采取的两大战略。然而,间歇性可再生能源发电和电动汽车充电负载之间的差异可能会给未来以可再生能源为主的电网带来负担。对于这个问题,电动汽车充电的分时 (ToU) 定价已被广泛讨论或采用,因为其潜力已被以前的研究所充分认可。虽然 ToU 机制主要基于驾驶员的价格响应行为,但本研究强调,电动汽车充电决策受价格以外的各种因素的影响,例如一天中的时间、充电器的可及性和等待时间。在这里,我们进行了离散选择实验来衡量驾驶员对电动汽车充电的偏好,并开发了一个电动汽车充电行为模型,该模型结合了驾驶员的情境响应能力和价格响应能力。此外,该模型还用于设计最佳 ToU 关税,以最大限度地减少净负荷变化。结果表明,战略性的 ToU 关税可以转移电动汽车充电负荷,但要实现理想的负荷转移需要巨大的价格差距。此外,与当前关税率的正常业务 (BaU) 情景相比,将 ToU 定价与充电基础设施的战略部署相结合可以有效地转移电动汽车充电负载,减少 22.14% 的 RE 减少,减少 10.12% 的 LNG 生产和碳排放。因此,本研究强调了灵活的电动汽车充电定价的重要性,以及在设计 EV ToU 定价时考虑充电基础设施部署的重要性。
更新日期:2024-08-20
中文翻译:
在深度车网集成系统中评估电动汽车充电的优化使用时间定价
电动汽车 (EV) 和可再生能源 (RE) 的扩张是各国为实现能源转型而采取的两大战略。然而,间歇性可再生能源发电和电动汽车充电负载之间的差异可能会给未来以可再生能源为主的电网带来负担。对于这个问题,电动汽车充电的分时 (ToU) 定价已被广泛讨论或采用,因为其潜力已被以前的研究所充分认可。虽然 ToU 机制主要基于驾驶员的价格响应行为,但本研究强调,电动汽车充电决策受价格以外的各种因素的影响,例如一天中的时间、充电器的可及性和等待时间。在这里,我们进行了离散选择实验来衡量驾驶员对电动汽车充电的偏好,并开发了一个电动汽车充电行为模型,该模型结合了驾驶员的情境响应能力和价格响应能力。此外,该模型还用于设计最佳 ToU 关税,以最大限度地减少净负荷变化。结果表明,战略性的 ToU 关税可以转移电动汽车充电负荷,但要实现理想的负荷转移需要巨大的价格差距。此外,与当前关税率的正常业务 (BaU) 情景相比,将 ToU 定价与充电基础设施的战略部署相结合可以有效地转移电动汽车充电负载,减少 22.14% 的 RE 减少,减少 10.12% 的 LNG 生产和碳排放。因此,本研究强调了灵活的电动汽车充电定价的重要性,以及在设计 EV ToU 定价时考虑充电基础设施部署的重要性。