当前位置:
X-MOL 学术
›
Prog. Mater. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Enhancing performance of lower-temperature solid oxide fuel cell cathodes through surface engineering
Progress in Materials Science ( IF 33.6 ) Pub Date : 2024-08-13 , DOI: 10.1016/j.pmatsci.2024.101353 Halefom G. Desta , Gebrehiwot Gebreslassie , Jianjian Zhang , Bin Lin , Yun Zheng , Jiujun Zhang
Progress in Materials Science ( IF 33.6 ) Pub Date : 2024-08-13 , DOI: 10.1016/j.pmatsci.2024.101353 Halefom G. Desta , Gebrehiwot Gebreslassie , Jianjian Zhang , Bin Lin , Yun Zheng , Jiujun Zhang
Solid oxide fuel cells (SOFCs) are recognized as highly efficient energy-conversion and eco-friendliness technologies. However, the high-temperature operation of conventional SOFCs at 800–1000 °C has hindered their practical applications due to the accelerated materials degradation and the resulting performance failures. Therefore, developing lower-temperature SOFCs (LT-SOFCs) seems necessary. With respect to LT-SOFCs, developing highly active cathode materials with long-term stability has been identified to be the priority, where cathode surface engineering has surfaced as a pivotal technique to bolster cathode functionality. This review delves into the myriads of surface modification strategies, including solution infiltration, atomic layer deposition (ALD), one-pot method, exsolution, pulsed laser deposition (PLD), and electrospinning (ES). Each method is scrutinized for its potential to enhance the cathode oxygen reduction reaction (ORR), a critical process in LT-SOFCs, while also fortifying the structural stability of cathode materials. This paper also meticulously evaluates recent breakthroughs in cathode surface engineering with highlighting the nuanced interplay between microstructural features and electrochemical performance. The technical challenges that persist in the practical application of LT-SOFCs are analyzed in this work and the possible further research directions are also suggested for overcoming the challenges towards significantly improved cathode performance including activity and stability.
中文翻译:
通过表面工程提高低温固体氧化物燃料电池阴极的性能
固体氧化物燃料电池(SOFC)被认为是高效的能量转换和生态友好技术。然而,传统SOFC在800-1000℃的高温下运行,会加速材料降解并导致性能失效,阻碍了其实际应用。因此,开发低温SOFC(LT-SOFC)似乎很有必要。对于LT-SOFC,开发具有长期稳定性的高活性阴极材料已被确定为优先事项,其中阴极表面工程已成为增强阴极功能的关键技术。这篇综述深入研究了无数的表面改性策略,包括溶液渗透、原子层沉积 (ALD)、一锅法、外溶、脉冲激光沉积 (PLD) 和静电纺丝 (ES)。每种方法都经过仔细审查,看其增强阴极氧还原反应 (ORR)(LT-SOFC 的关键过程)的潜力,同时还增强了阴极材料的结构稳定性。本文还仔细评估了阴极表面工程的最新突破,强调了微观结构特征和电化学性能之间微妙的相互作用。这项工作分析了LT-SOFC实际应用中持续存在的技术挑战,并提出了可能的进一步研究方向,以克服显着提高阴极性能(包括活性和稳定性)的挑战。
更新日期:2024-08-13
中文翻译:
通过表面工程提高低温固体氧化物燃料电池阴极的性能
固体氧化物燃料电池(SOFC)被认为是高效的能量转换和生态友好技术。然而,传统SOFC在800-1000℃的高温下运行,会加速材料降解并导致性能失效,阻碍了其实际应用。因此,开发低温SOFC(LT-SOFC)似乎很有必要。对于LT-SOFC,开发具有长期稳定性的高活性阴极材料已被确定为优先事项,其中阴极表面工程已成为增强阴极功能的关键技术。这篇综述深入研究了无数的表面改性策略,包括溶液渗透、原子层沉积 (ALD)、一锅法、外溶、脉冲激光沉积 (PLD) 和静电纺丝 (ES)。每种方法都经过仔细审查,看其增强阴极氧还原反应 (ORR)(LT-SOFC 的关键过程)的潜力,同时还增强了阴极材料的结构稳定性。本文还仔细评估了阴极表面工程的最新突破,强调了微观结构特征和电化学性能之间微妙的相互作用。这项工作分析了LT-SOFC实际应用中持续存在的技术挑战,并提出了可能的进一步研究方向,以克服显着提高阴极性能(包括活性和稳定性)的挑战。