当前位置:
X-MOL 学术
›
Soft Robot.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Origami-Enhanced Mechanical Properties for Worm-Like Robot.
Soft Robotics ( IF 6.4 ) Pub Date : 2024-07-04 , DOI: 10.1089/soro.2023.0246 Zuolin Liu 1 , Zihan He 1 , Xiao Hu 1 , Zitao Sun 1 , Qi Ge 2 , Jian Xu 1 , Hongbin Fang 1
Soft Robotics ( IF 6.4 ) Pub Date : 2024-07-04 , DOI: 10.1089/soro.2023.0246 Zuolin Liu 1 , Zihan He 1 , Xiao Hu 1 , Zitao Sun 1 , Qi Ge 2 , Jian Xu 1 , Hongbin Fang 1
Affiliation
In recent years, the exploration of worm-like robots has garnered much attention for their adaptability in confined environments. However, current designs face challenges in fully utilizing the mechanical properties of structures/materials to replicate the superior performance of real worms. In this article, we propose an approach to address this limitation based on the stacked Miura origami structure, achieving the seamless integration of structural design, mechanical properties, and robotic functionalities, that is, the mechanical properties originate from the geometric design of the origami structure and at the same time serve the locomotion capability of the robot. Three major advantages of our design are: the implementation of origami technology facilitates a more accessible and convenient fabrication process for segmented robotic skin with periodicity and flexibility, as well as robotic bristles with anchoring effect; the utilization of the Poisson's ratio effect for deformation amplification; and the incorporation of localized folding motion for continuous peristaltic locomotion. Utilizing the high geometric designability inherent in origami, our robot demonstrates customizable morphing and quantifiable mechanical properties. Based on the origami worm-like robot prototype, we experimentally verified the effectiveness of the proposed design in realizing the deformation amplification effect and localized folding motion. By comparing this to a conventional worm-like robot with discontinuous deformation, we highlight the merits of these mechanical properties in enhancing the robot's mobility. To sum up, this article showcases a bottom-up approach to robot development, including geometric design, mechanical characterization, and functionality realization, presenting a unique perspective for advancing the development of bioinspired soft robots.
中文翻译:
折纸增强了类蠕虫机器人的机械性能。
近年来,对类蠕虫机器人的探索因其在有限环境中的适应性而备受关注。然而,当前的设计在充分利用结构/材料的机械性能来复制真实蠕虫的卓越性能方面面临挑战。在本文中,我们提出了一种基于堆叠式Miura折纸结构来解决这一限制的方法,实现结构设计、力学性能和机器人功能的无缝集成,即力学性能源于折纸结构的几何设计同时服务于机器人的运动能力。我们设计的三个主要优点是:折纸技术的实施促进了具有周期性和灵活性的分段机器人皮肤以及具有锚定效应的机器人刷毛的更容易和方便的制造过程;利用泊松比效应进行变形放大;以及结合局部折叠运动以实现连续蠕动运动。利用折纸固有的高几何可设计性,我们的机器人展示了可定制的变形和可量化的机械特性。基于折纸蠕虫机器人原型,我们实验验证了该设计在实现变形放大效果和局部折叠运动方面的有效性。通过将其与具有不连续变形的传统蠕虫式机器人进行比较,我们强调了这些机械特性在增强机器人移动性方面的优点。 综上所述,本文展示了一种自下而上的机器人开发方法,包括几何设计、机械表征和功能实现,为推进仿生软机器人的开发提供了独特的视角。
更新日期:2024-07-04
中文翻译:
折纸增强了类蠕虫机器人的机械性能。
近年来,对类蠕虫机器人的探索因其在有限环境中的适应性而备受关注。然而,当前的设计在充分利用结构/材料的机械性能来复制真实蠕虫的卓越性能方面面临挑战。在本文中,我们提出了一种基于堆叠式Miura折纸结构来解决这一限制的方法,实现结构设计、力学性能和机器人功能的无缝集成,即力学性能源于折纸结构的几何设计同时服务于机器人的运动能力。我们设计的三个主要优点是:折纸技术的实施促进了具有周期性和灵活性的分段机器人皮肤以及具有锚定效应的机器人刷毛的更容易和方便的制造过程;利用泊松比效应进行变形放大;以及结合局部折叠运动以实现连续蠕动运动。利用折纸固有的高几何可设计性,我们的机器人展示了可定制的变形和可量化的机械特性。基于折纸蠕虫机器人原型,我们实验验证了该设计在实现变形放大效果和局部折叠运动方面的有效性。通过将其与具有不连续变形的传统蠕虫式机器人进行比较,我们强调了这些机械特性在增强机器人移动性方面的优点。 综上所述,本文展示了一种自下而上的机器人开发方法,包括几何设计、机械表征和功能实现,为推进仿生软机器人的开发提供了独特的视角。