Transportation ( IF 3.5 ) Pub Date : 2024-08-23 , DOI: 10.1007/s11116-024-10531-3 Oriol Roig-Costa , Oriol Marquet , Aldo Arranz-López , Carme Miralles-Guasch , Veronique Van Acker
Micromobility, which includes bicycle-sharing systems, e-scooters, and shared moped-style scooters, has emerged as a popular alternative to traditional transport modes in urban environments, thus expanding the number of transportation options available to urban travellers. Previous research has primarily relied on trip-based data to explore the multimodal character of micromobility. However, existing evidence has failed to understand the ways in which urban travellers have reshaped their mobility patterns as a consequence of the introduction of micromobility. Using a travel survey (N = 902) set in Barcelona, Spain, cluster techniques are used to group micromobility users according to their frequency of use of three different micromobility modes (bicycle-sharing systems, private e-scooter, and moped-style scooter-sharing services). Then, a multinomial logistic regression was used, in order to explore each cluster’s usage of traditional modes of transport, along with all potential weekly combinations between modes. Results show that most micromobility users rely on a single type of micromobility mode on a weekly basis. The model further indicates that private e-scooter, shared bicycle, and shared moped-style scooter users develop different weekly mobility combination patterns. While personal micromobility options (private e-scooter) are associated with monomodal tendencies, sharing services (bicycle sharing and moped-style scooter sharing) encourage multimodal behaviours. These findings contribute to the limited knowledge concerning the role of some micromobility alternatives in creating more rational and less habit-dependent travel behaviour choices.
中文翻译:
了解城市环境中微移动用户的多式联运模式:来自巴塞罗那的见解
微型交通,包括自行车共享系统、电动滑板车和共享轻便摩托车,已成为城市环境中传统交通方式的流行替代品,从而扩大了城市旅行者的交通选择数量。先前的研究主要依靠基于行程的数据来探索微交通的多模式特征。然而,现有证据未能理解城市旅行者因微出行的引入而重塑其出行模式的方式。使用在西班牙巴塞罗那进行的旅行调查 (N = 902),使用聚类技术根据微移动用户使用三种不同微移动模式(自行车共享系统、私人电动滑板车和轻便摩托车)的频率对微移动用户进行分组- 共享服务)。然后,使用多项逻辑回归来探索每个集群对传统交通方式的使用情况,以及模式之间所有潜在的每周组合。结果表明,大多数微移动用户每周依赖单一类型的微移动模式。该模型进一步表明,私人电动滑板车、共享自行车和共享轻便摩托车用户形成了不同的每周出行组合模式。虽然个人微交通选择(私人电动滑板车)与单一模式倾向相关,但共享服务(自行车共享和轻便摩托车共享)鼓励多模式行为。这些发现导致人们对一些微出行替代方案在创造更理性、更少依赖习惯的出行行为选择方面的作用了解有限。