当前位置: X-MOL 学术Phys. Chem. Chem. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Size-dependent shock response mechanisms in nanogranular RDX: a reactive molecular dynamics study
Physical Chemistry Chemical Physics ( IF 2.9 ) Pub Date : 2024-08-22 , DOI: 10.1039/d4cp01696c
Xiaona Huang 1, 2 , Chunliang Ji 1, 3, 4 , Xiaoxia Ma 3 , Lixiao Hao 1 , Feng Guo 5 , Guangcheng Yang 1 , Jichun Huang 1 , Yushi Wen 1 , Zhiqiang Qiao 1
Affiliation  

Understanding the shock initiation mechanisms of explosives is pivotal for advancing physicochemical theories and enhancing experimental methodologies. This study delves into the size-dependent shock responses of nanogranular hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) through nonequilibrium reactive molecular dynamics simulations. Utilizing the ReaxFF-lg force field, we examine the influence of the particle size on the decomposition dynamics of RDX under varying shock velocities. Our findings reveal that larger particles promote more significant RDX decomposition at lower velocities due to fluid jet formation and gas compression during void collapse. Conversely, smaller particles exhibit a higher average temperature and a faster decomposition rate under high-velocity shocks, attributed to their increased specific surface area. Detailed chemical reaction pathways are analyzed to elucidate the growth and initiation of reactions during shock waves. The results contribute to resolving the discrepancies observed in experimental studies of shocked granular explosives and provide a deeper understanding of the underlying mechanisms governing their behavior. This research offers valuable insights into the design and control of nano- and submicron-sized explosives with tailored sensitivity to external stimuli.

中文翻译:


纳米颗粒 RDX 中尺寸依赖性冲击响应机制:反应分子动力学研究



了解炸药的冲击引发机制对于推进物理化学理论和增强实验方法至关重要。本研究通过非平衡反应分子动力学模拟,深入研究了纳米颗粒六氢-1,3,5-三硝基-1,3,5-三嗪 (RDX) 的尺寸依赖性冲击响应。利用 ReaxFF-lg 力场,我们研究了不同冲击速度下颗粒尺寸对 RDX 分解动力学的影响。我们的研究结果表明,由于空隙塌陷过程中流体射流的形成和气体压缩,较大的颗粒会以较低的速度促进更显着的 RDX 分解。相反,较小的颗粒在高速冲击下表现出较高的平均温度和较快的分解速率,这归因于其增加的比表面积。分析详细的化学反应路径,以阐明冲击波期间反应的增长和引发​​。这些结果有助于解决在冲击颗粒炸药实验研究中观察到的差异,并提供对其行为的潜在机制的更深入的了解。这项研究为纳米和亚微米尺寸炸药的设计和控制提供了宝贵的见解,这些炸药具有对外部刺激的定制敏感性。
更新日期:2024-08-27
down
wechat
bug