Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Electrochemical macrokinetics analysis of nitrite electrocatalytic reduction to ammonia
AIChE Journal ( IF 3.5 ) Pub Date : 2024-08-21 , DOI: 10.1002/aic.18578 Yang Lv 1 , Wenkai Teng 1 , Yang Li 1 , Honghui Ou 1 , Tao Xie 1 , Xiaoqing Yan 1 , Guidong Yang 1
AIChE Journal ( IF 3.5 ) Pub Date : 2024-08-21 , DOI: 10.1002/aic.18578 Yang Lv 1 , Wenkai Teng 1 , Yang Li 1 , Honghui Ou 1 , Tao Xie 1 , Xiaoqing Yan 1 , Guidong Yang 1
Affiliation
Electrocatalytic nitrite reduction (e-NO2−RR) offers an attractive strategy for industrial green ammonia synthesis. The understanding of electrochemical kinetics is the core to guarantee the efficient operation of e-NO2−RR system. However, the application of the widely used Butler–Volmer equation should be restricted to the constraint of non-mass transfer effects. In this work, an electrochemical macrokinetics equation for mass transfer restriction region was developed based on the traditional macrokinetics thought, which combined the Practical Butler–Volmer equation and Nernst-Plank equation. The model validation was carried out by the combination of multiphysics-field simulation, computational fluid dynamics simulation and experiments, and the results show that the average relative error between experiments and simulations is less than 2%. The results in this article contribute to an in-depth understanding of the kinetics behavior for e-NO2−RR and achieve the extension of electrochemical kinetics equation from non-mass transfer restriction region to mass transfer restriction region.
中文翻译:
亚硝酸盐电催化还原制氨的电化学宏观动力学分析
电催化亚硝酸盐还原(e-NO 2 − RR)为工业绿色氨合成提供了一种有吸引力的策略。对电化学动力学的理解是保证e-NO 2 − RR系统高效运行的核心。然而,广泛使用的巴特勒-沃尔默方程的应用应仅限于非传质效应的约束。本工作基于传统的宏观动力学思想,结合实用巴特勒-沃尔默方程和能斯特-普朗克方程,建立了传质限制区的电化学宏观动力学方程。采用多物理场仿真、计算流体力学仿真和实验相结合的方式进行模型验证,结果表明实验与仿真的平均相对误差小于2%。本文的结果有助于深入理解e-NO 2 − RR的动力学行为,实现电化学动力学方程从非传质限制区到传质限制区的扩展。
更新日期:2024-08-21
中文翻译:
亚硝酸盐电催化还原制氨的电化学宏观动力学分析
电催化亚硝酸盐还原(e-NO 2 − RR)为工业绿色氨合成提供了一种有吸引力的策略。对电化学动力学的理解是保证e-NO 2 − RR系统高效运行的核心。然而,广泛使用的巴特勒-沃尔默方程的应用应仅限于非传质效应的约束。本工作基于传统的宏观动力学思想,结合实用巴特勒-沃尔默方程和能斯特-普朗克方程,建立了传质限制区的电化学宏观动力学方程。采用多物理场仿真、计算流体力学仿真和实验相结合的方式进行模型验证,结果表明实验与仿真的平均相对误差小于2%。本文的结果有助于深入理解e-NO 2 − RR的动力学行为,实现电化学动力学方程从非传质限制区到传质限制区的扩展。