当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Manufacture and testing of biomass-derivable thermosets for wind blade recycling
Science ( IF 44.7 ) Pub Date : 2024-08-22 , DOI: 10.1126/science.adp5395
Ryan W. Clarke 1, 2 , Erik G. Rognerud 1, 2 , Allen Puente-Urbina 1 , David Barnes 3 , Paul Murdy 4 , Michael L. McGraw 1 , Jimmy M. Newkirk 1 , Ryan Beach 3 , Jacob A. Wrubel 5 , Levi J. Hamernik 1, 2 , Katherine A. Chism 1, 2 , Andrea L. Baer 1, 2 , Gregg T. Beckham 1, 2 , Robynne E. Murray 3 , Nicholas A. Rorrer 1, 2
Affiliation  

Wind energy is helping to decarbonize the electrical grid, but wind blades are not recyclable, and current end-of-life management strategies are not sustainable. To address the material recyclability challenges in sustainable energy infrastructure, we introduce scalable biomass-derivable polyester covalent adaptable networks and corresponding fiber-reinforced composites for recyclable wind blade fabrication. Through experimental and computational studies, including vacuum-assisted resin-transfer molding of a 9-meter wind blade prototype, we demonstrate drop-in technological readiness of this material with existing manufacture techniques, superior properties relative to incumbent materials, and practical end-of-life chemical recyclability. Most notable is the counterintuitive creep suppression, outperforming industry state-of-the-art thermosets despite the dynamic cross-link topology. Overall, this report details the many facets of wind blade manufacture, encompassing chemistry, engineering, safety, mechanical analyses, weathering, and chemical recyclability, enabling a realistic path toward biomass-derivable, recyclable wind blades.

中文翻译:


用于风力叶片回收的生物质衍生热固性材料的制造和测试



风能正在帮助电网脱碳,但风力叶片不可回收,而且当前的报废管理策略不可持续。为了解决可持续能源基础设施中的材料可回收性挑战,我们引入了可扩展的生物质衍生聚酯共价适应性网络和相应的纤维增强复合材料,用于可回收的风力叶片制造。通过实验和计算研究,包括 9 米风力叶片原型的真空辅助树脂传递模塑成型,我们证明了这种材料在现有制造技术下的直接技术准备、相对于现有材料的优越性能以及实际的最终结果- 终生化学品可回收性。最值得注意的是违反直觉的蠕变抑制,尽管采用动态交联拓扑,但其性能仍优于行业最先进的热固性材料。总体而言,本报告详细介绍了风力叶片制造的许多方面,包括化学、工程、安全、机械分析、风化和化学可回收性,为实现生物质衍生、可回收的风力叶片提供了一条现实的道路。
更新日期:2024-08-22
down
wechat
bug