当前位置: X-MOL 学术Int. J. Numer. Methods Heat Fluid Flow › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Novel airfoil for improved supersonic aerodynamic performance
International Journal of Numerical Methods for Heat & Fluid Flow ( IF 4.0 ) Pub Date : 2024-08-26 , DOI: 10.1108/hff-06-2024-0433
Zeyad M. Manaa , Naef A.A. Qasem

Purpose

This study aims to validate the linear flow theory with computational fluid dynamics (CFD) simulations and to propose a novel shape for the airfoil that will improve supersonic aerodynamic performance compared to the National Advisory Committee for Aeronautics (NACA) 64a210 airfoil.

Design/methodology/approach

To design the new airfoil shape, this study uses a convex optimization approach to obtain a global optimal shape for an airfoil. First, modeling is conducted using linear flow theory, and then numerical verification is done by CFD simulations using ANSYS Fluent. The optimization process ensures that the new airfoil maintains the same cross-sectional area and thickness as the NACA 64a210 airfoil. This study found that an efficient way to obtain the ideal airfoil shape is by using linear flow theory, and the numerical simulations supported the assumptions inherent in the linear flow theory.

Findings

This study’s findings show notable improvements (from 4% to 200%) in the aerodynamic performance of the airfoil, especially in the supersonic range, which points to the suggested airfoil as a potential option for several fighter aircraft. Under various supersonic conditions, the optimized airfoil exhibits improved lift-over-drag ratios, leading to improved flight performance and lower fuel consumption.

Research limitations/implications

This study was conducted mainly for supersonic flow, whereas the subsonic flow is tested for a Mach number of 0.7. This study would be extended for both subsonic and supersonic flights.

Practical implications

Convex optimization and linear flow theory are combined in this work to create an airfoil that performs better in supersonic conditions than the NACA 64a210. By closely matching the CFD results, the linear flow theory's robustness is confirmed. This means that the initial design phase no longer requires extensive CFD simulations, and the linear flow theory can be used quickly and efficiently to obtain optimal airfoil shapes.

Social implications

The proposed airfoil can be used in different fighter aircraft to enhance performance and reduce fuel consumption. Thus, lower carbon emission is expected.

Originality/value

The unique aspect of this work is how convex optimization and linear flow theory were combined to create an airfoil that performs better in supersonic conditions than the NACA 64a210. Comprehensive CFD simulations were used for validation, highlighting the optimization approach's strength and usefulness in aerospace engineering.



中文翻译:


新型翼型可改善超音速空气动力性能


 目的


本研究旨在通过计算流体动力学 (CFD) 模拟验证线性流动理论,并提出一种新颖的翼型形状,与国家航空咨询委员会 (NACA) 64a210 翼型相比,该形状将提高超音速空气动力性能。


设计/方法论/途径


为了设计新的翼型形状,本研究使用凸优化方法来获得翼型的全局最佳形状。首先利用线性流动理论进行建模,然后利用ANSYS Fluent进行CFD模拟进行数值验证。优化过程确保新翼型保持与NACA 64a210翼型相同的横截面积和厚度。这项研究发现,获得理想翼型形状的有效方法是使用线性流理论,并且数值模拟支持了线性流理论固有的假设。

 发现


这项研究的结果表明,机翼的空气动力性能显着提高(从 4% 提高到 200%),尤其是在超音速范围内,这表明所建议的机翼可作为多种战斗机的潜在选择。在各种超音速条件下,优化后的机翼表现出更高的升阻比,从而提高飞行性能并降低燃油消耗。


研究局限性/影响


这项研究主要针对超音速流进行,而亚音速流则针对 0.7 马赫数进行测试。这项研究将扩展到亚音速和超音速飞行。

 实际意义


这项工作结合了凸优化和线性流动理论,创造了一种在超音速条件下比 NACA 64a210 表现更好的翼型。通过紧密匹配 CFD 结果,线性流动理论的稳健性得到了证实。这意味着初始设计阶段不再需要大量的CFD模拟,并且可以快速有效地使用线性流动理论来获得最佳翼型形状。

 社会影响


所提出的翼型可用于不同的战斗机,以提高性能并降低燃油消耗。因此,预计碳排放量将会降低。

 原创性/价值


这项工作的独特之处在于如何将凸优化和线性流动理论相结合,创造出在超音速条件下比 NACA 64a210 表现更好的机翼。使用全面的 CFD 模拟进行验证,突出了优化方法在航空航天工程中的优势和实用性。

更新日期:2024-08-26
down
wechat
bug