当前位置:
X-MOL 学术
›
Int. J. Min. Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Identifying the real fracture hidden in rock microcrack zone by acoustic emission energy
International Journal of Mining Science and Technology ( IF 11.7 ) Pub Date : 2024-07-17 , DOI: 10.1016/j.ijmst.2024.06.006 Yuekun Xing , Bingxiang Huang , Guangqing Zhang , Binghong Li , Hang Xu , Xuejie Jiao , Yang Yu , Taisen Han , Jinlong Chen
International Journal of Mining Science and Technology ( IF 11.7 ) Pub Date : 2024-07-17 , DOI: 10.1016/j.ijmst.2024.06.006 Yuekun Xing , Bingxiang Huang , Guangqing Zhang , Binghong Li , Hang Xu , Xuejie Jiao , Yang Yu , Taisen Han , Jinlong Chen
Identifying the real fracture of rock hidden in acoustic emission (AE) source clusters (AE-depicted microcrack zone) remains challenging and crucial. Here we revealed the AE energy (representing dissipated energy) distribution rule in the rock microcrack zone and proposed an AE-energy-based method for identifying the real fracture. (1) A set of fracture experiments were performed on granite using wedge-loading, and the fracture process was detected and recorded by AE. The microcrack zone associated with the energy dissipation was characterized by AE sources and energy distribution, utilizing our self-developed AE analysis program (RockAE). (2) The accumulated AE energy, an index representing energy dissipation, across the AE-depicted microcrack zone followed the normal distribution model (the mean and variance relate to the real fracture path and the microcrack zone width). This result implies that the nucleation and coalescence of massive cracks (i.e., real fracture generation process) are supposed to follow a normal distribution. (3) Then, we obtained the real fracture extension path by joining the peak positions of the AE energy normal distribution curve at different cross-sections of the microcrack zone. Consequently, we distinguished between the microcrack zone and the concealed real fracture within it. The deviation was validated as slight as 1–3 mm.
中文翻译:
利用声发射能量识别隐藏在岩石微裂隙带中的真实裂隙
识别隐藏在声发射 (AE) 源簇(AE 描述的微裂纹区域)中的岩石的真实裂缝仍然具有挑战性且至关重要。在此,我们揭示了岩石微裂纹区的声发射能量(代表耗散能)分布规律,并提出了一种基于声发射能量的真实裂缝识别方法。 (1)采用楔块加载方式对花岗岩进行了一组断裂实验,利用AE检测并记录断裂过程。利用我们自主开发的声发射分析程序(RockAE),通过声发射源和能量分布对与能量耗散相关的微裂纹区域进行了表征。 (2) AE描述的微裂纹区域的累积AE能量是代表能量耗散的指标,遵循正态分布模型(均值和方差与真实裂缝路径和微裂纹区域宽度有关)。这个结果意味着大块裂纹的成核和合并(即真正的断裂生成过程)应该遵循正态分布。 (3) 然后,通过连接微裂纹区不同截面的AE能量正态分布曲线的峰值位置,得到真实的断裂扩展路径。因此,我们区分了微裂纹区域和其中隐藏的真实断裂。经验证,偏差小至 1-3 毫米。
更新日期:2024-07-17
中文翻译:
利用声发射能量识别隐藏在岩石微裂隙带中的真实裂隙
识别隐藏在声发射 (AE) 源簇(AE 描述的微裂纹区域)中的岩石的真实裂缝仍然具有挑战性且至关重要。在此,我们揭示了岩石微裂纹区的声发射能量(代表耗散能)分布规律,并提出了一种基于声发射能量的真实裂缝识别方法。 (1)采用楔块加载方式对花岗岩进行了一组断裂实验,利用AE检测并记录断裂过程。利用我们自主开发的声发射分析程序(RockAE),通过声发射源和能量分布对与能量耗散相关的微裂纹区域进行了表征。 (2) AE描述的微裂纹区域的累积AE能量是代表能量耗散的指标,遵循正态分布模型(均值和方差与真实裂缝路径和微裂纹区域宽度有关)。这个结果意味着大块裂纹的成核和合并(即真正的断裂生成过程)应该遵循正态分布。 (3) 然后,通过连接微裂纹区不同截面的AE能量正态分布曲线的峰值位置,得到真实的断裂扩展路径。因此,我们区分了微裂纹区域和其中隐藏的真实断裂。经验证,偏差小至 1-3 毫米。