当前位置:
X-MOL 学术
›
Chem Catal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Plasmon-induced photocatalytic nitrogen fixation on medium-spin Au3Fe1/Mo single-atom alloy antenna reactor
Chem Catalysis ( IF 11.5 ) Pub Date : 2024-08-20 , DOI: 10.1016/j.checat.2024.101083 Bing-Hao Wang , Biao Hu , Guang-Hui Chen , Xiong Wang , Sheng Tian , Yang Li , Xing-Sheng Hu , Huijuan Wang , Chak-Tong Au , Li-Long Jiang , Lang Chen , Shuang-Feng Yin
Chem Catalysis ( IF 11.5 ) Pub Date : 2024-08-20 , DOI: 10.1016/j.checat.2024.101083 Bing-Hao Wang , Biao Hu , Guang-Hui Chen , Xiong Wang , Sheng Tian , Yang Li , Xing-Sheng Hu , Huijuan Wang , Chak-Tong Au , Li-Long Jiang , Lang Chen , Shuang-Feng Yin
Developing photocatalysts with active sites that have appropriate interactions with both N2 and reactive intermediates has proved to be feasible for direct nitrogen reduction but is still a formidable challenge. Herein, a medium-spin Au3 Fe1 /Mo single-atom alloy photocatalyst with optical antenna structure is fabricated through an alloying strategy. Fe atoms of a medium-spin state anchored on Au nanoparticles at the single-atom level via Au–Fe bonding is confirmed by combined characterizations of aberration-corrected high-angle annular dark field scanning transmission electron microscopy (AC-HAADF-STEM), X-ray absorption fine structure (XAFS), and Mössbauer spectroscopic techniques. With strong Mo-Fe-Au electronic interactions, the Fe sites act as intrinsic centers apt for nitrogen adsorption and activation, which is conducive to the preferential cleavage of the N≡N bond and modulate adsorption of reactive intermediates. Due to synergistic effect of Au nanoparticles acting as optical antennae, the Au3 Fe1 /Mo photocatalyst showed excellent photocatalytic nitrogen reduction reaction (pNRR) performance, giving an ammonia formation rate of 484.2 μmol h−1 g−1 and solar-to-ammonia (STA) conversion efficiency up to 0.12%.
中文翻译:
中自旋 Au3Fe1/Mo 单原子合金天线反应器上的等离激元诱导光催化固氮
开发具有与氮气和反应中间体具有适当相互作用的活性位点的光催化剂已被证明对于直接氮还原是可行的,但仍然是一个艰巨的挑战。在此,通过合金化策略制备了具有光学天线结构的中自旋Au3Fe1/Mo单原子合金光催化剂。通过像差校正高角度环形暗场扫描透射电子显微镜 (AC-HAADF-STEM) 的综合表征,证实了中等自旋态的 Fe 原子通过 Au-Fe 键合以单原子水平锚定在 Au 纳米粒子上, X 射线吸收精细结构 (XAFS) 和穆斯堡尔光谱技术。由于具有强的Mo-Fe-Au电子相互作用,Fe位点作为易于氮吸附和活化的内在中心,有利于N≡N键的优先断裂并调节反应中间体的吸附。由于Au纳米颗粒作为光学天线的协同作用,Au3Fe1/Mo光催化剂表现出优异的光催化氮还原反应(pNRR)性能,氨生成率为484.2 μmol h−1 g−1,太阳能氨生成速率(STA) )转换效率高达0.12%。
更新日期:2024-08-20
中文翻译:
中自旋 Au3Fe1/Mo 单原子合金天线反应器上的等离激元诱导光催化固氮
开发具有与氮气和反应中间体具有适当相互作用的活性位点的光催化剂已被证明对于直接氮还原是可行的,但仍然是一个艰巨的挑战。在此,通过合金化策略制备了具有光学天线结构的中自旋Au3Fe1/Mo单原子合金光催化剂。通过像差校正高角度环形暗场扫描透射电子显微镜 (AC-HAADF-STEM) 的综合表征,证实了中等自旋态的 Fe 原子通过 Au-Fe 键合以单原子水平锚定在 Au 纳米粒子上, X 射线吸收精细结构 (XAFS) 和穆斯堡尔光谱技术。由于具有强的Mo-Fe-Au电子相互作用,Fe位点作为易于氮吸附和活化的内在中心,有利于N≡N键的优先断裂并调节反应中间体的吸附。由于Au纳米颗粒作为光学天线的协同作用,Au3Fe1/Mo光催化剂表现出优异的光催化氮还原反应(pNRR)性能,氨生成率为484.2 μmol h−1 g−1,太阳能氨生成速率(STA) )转换效率高达0.12%。