Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Solid-electrolyte interphase governs zinc ion transfer kinetics in high-rate and stable zinc metal batteries
Chem ( IF 19.1 ) Pub Date : 2024-08-21 , DOI: 10.1016/j.chempr.2024.07.028 Xun Guo , Junfeng Lu , Mi Wang , Ao Chen , Hu Hong , Qing Li , Jiaxiong Zhu , Yanbo Wang , Shuo Yang , Zhaodong Huang , Yanlei Wang , Zengxia Pei , Chunyi Zhi
Chem ( IF 19.1 ) Pub Date : 2024-08-21 , DOI: 10.1016/j.chempr.2024.07.028 Xun Guo , Junfeng Lu , Mi Wang , Ao Chen , Hu Hong , Qing Li , Jiaxiong Zhu , Yanbo Wang , Shuo Yang , Zhaodong Huang , Yanlei Wang , Zengxia Pei , Chunyi Zhi
Solid-electrolyte interphases (SEIs) enable stable zinc anodes and modify the Zn2+ transfer behaviors in rechargeable zinc metal batteries (ZMBs). Precisely understanding Zn2+ charge transfer kinetics within SEIs and benchmarking it against other essential steps is crucial for designing high-rate and efficient ZMBs. However, hitherto, such knowledge remains elusive. Herein, we identified that Zn2+ transport within SEIs is the rate-determining step of in-cell carrier transfer kinetics in typical intercalation-type ZMBs. By fine-tuning SEIs using an amide-based deep eutectic electrolyte with cyclic amide additives, we demonstrated that highly Zn2+ -conductive Zn3 N2 species within the SEI outperform state-of-the-art ZnF2 in facilitating Zn2+ transfer and stabilizing the Zn anode. This SEI design substantially enhances the rate capability and cycling stability of Zn||Mn-doped V2 O5 pouch cells upon low negative to positive capacity ratio (1.4:1), achieving high Zn anode utilization (72%) and device-level specific energy. This study features a fresh impetus on SEI design for high-performance ZMBs.
中文翻译:
固体电解质界面控制高倍率和稳定的锌金属电池中的锌离子转移动力学
固体电解质界面 (SEI) 可实现稳定的锌负极,并改变可充电锌金属电池 (ZMB) 中的 Zn2+ 转移行为。精确了解 SEI 中的 Zn2+ 电荷转移动力学并将其与其他基本步骤进行基准测试,对于设计高速率和高效的 ZMB 至关重要。然而,迄今为止,这些知识仍然难以捉摸。在此,我们确定 SEI 内的 Zn 2 + 转运是典型插层型 ZMB 中细胞内载体转移动力学的速率决定步骤。通过使用带有环酰胺添加剂的酰胺基深共晶电解质微调 SEI,我们证明了 SEI 中高度 Zn2+ 导电的 Zn3N2 物质在促进 Zn2+ 转移和稳定 Zn 阳极方面优于最先进的 ZnF2。这种 SEI 设计大大增强了 Zn||掺杂 Mn 的 V2O5 软包电池在低负容量与正容量比 (1.4:1) 下,实现了高锌负极利用率 (72%) 和器件级比能量。本研究为高性能 ZMB 的 SEI 设计提供了新的动力。
更新日期:2024-08-21
中文翻译:
固体电解质界面控制高倍率和稳定的锌金属电池中的锌离子转移动力学
固体电解质界面 (SEI) 可实现稳定的锌负极,并改变可充电锌金属电池 (ZMB) 中的 Zn2+ 转移行为。精确了解 SEI 中的 Zn2+ 电荷转移动力学并将其与其他基本步骤进行基准测试,对于设计高速率和高效的 ZMB 至关重要。然而,迄今为止,这些知识仍然难以捉摸。在此,我们确定 SEI 内的 Zn 2 + 转运是典型插层型 ZMB 中细胞内载体转移动力学的速率决定步骤。通过使用带有环酰胺添加剂的酰胺基深共晶电解质微调 SEI,我们证明了 SEI 中高度 Zn2+ 导电的 Zn3N2 物质在促进 Zn2+ 转移和稳定 Zn 阳极方面优于最先进的 ZnF2。这种 SEI 设计大大增强了 Zn||掺杂 Mn 的 V2O5 软包电池在低负容量与正容量比 (1.4:1) 下,实现了高锌负极利用率 (72%) 和器件级比能量。本研究为高性能 ZMB 的 SEI 设计提供了新的动力。