当前位置: X-MOL 学术Adv. Comput. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Morley type virtual element method for von Kármán equations
Advances in Computational Mathematics ( IF 1.7 ) Pub Date : 2024-08-22 , DOI: 10.1007/s10444-024-10158-z
Devika Shylaja , Sarvesh Kumar

This paper analyses the nonconforming Morley type virtual element method to approximate a regular solution to the von Kármán equations that describes bending of very thin elastic plates. Local existence and uniqueness of a discrete solution to the non-linear problem is discussed. A priori error estimate in the energy norm is established under minimal regularity assumptions on the exact solution. Error estimates in piecewise \(H^1\) and \(L^2\) norms are also derived. A working procedure to find an approximation for the discrete solution using Newton’s method is discussed. Numerical results that justify theoretical estimates are presented.



中文翻译:


冯卡门方程的莫利型虚元法



本文分析了非相容 Morley 型虚拟单元方法,以近似描述极薄弹性板弯曲的 von Kármán 方程的正则解。讨论了非线性问题离散解的局部存在性和唯一性。能量范数中的先验误差估计是在精确解的最小规律性假设下建立的。还导出了分段\(H^1\)\(L^2\)范数中的误差估计。讨论了使用牛顿法寻找离散解的近似值的工作过程。给出了证明理论估计合理性的数值结果。

更新日期:2024-08-22
down
wechat
bug