当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Unveiling π–π interactions in triptycene-phenazine/SWCNT redox chemistry using ESR spectroscopy
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2024-08-22 , DOI: 10.1039/d4ta04176c
Qi Chen 1 , Rie Suizu 1 , Yoshiaki Shuku 1 , Haruka Omachi 1 , Michio M. Matsushita 1 , Shuta Fukuura 2 , Takashi Yumura 2 , Shunji Bandow 3 , Kunio Awaga 1
Affiliation  

Grasping the intricate π–π interactions between redox-active organic materials and conductive carbons is key to optimizing the performance of organic electrodes in energy storage devices. However, their precise role in redox chemistry remains elusive. In this work, the geometric congruence between the triptycene-phenazine (Trip-Phz) molecule, with its paddle-wheel structure, and the curved single-walled carbon nanotubes (SWCNTs), enables the self-assembly of Trip-Phz/SWCNT composites for aqueous supercapacitors. The Trip-Phz/SWCNT composites demonstrate well-defined redox peaks on cyclic voltammograms, coupled with a specific capacitance of 410 F g−1. Our study goes one step further by capturing the electrochemically induced radicals through electron spin resonance (ESR) spectroscopy. The theoretically predicted robust π–π interactions between the inner-layer Trip-PhzH63˙+ radicals and SWCNTs facilitate the electron transfer effect, leading to an ESR silent state. Conversely, the ESR spectra of the outer-layer radicals feature a Dysonian line, attributive of the high conductivity of the Trip-Phz/SWCNT composites (∼102 S cm−1). The insights gained from this research inspire the design of stable organic/carbon electrodes for advanced energy storage devices.

中文翻译:


使用 ESR 光谱揭示三蝶烯吩嗪/SWCNT 氧化还原化学中的 π-π 相互作用



掌握氧化还原活性有机材料和导电碳之间复杂的π-π相互作用是优化储能装置中有机电极性能的关键。然而,它们在氧化还原化学中的确切作用仍然难以捉摸。在这项工作中,具有桨轮结构的三蝶烯吩嗪 (Trip-Phz) 分子与弯曲的单壁碳纳米管 (SWCNT) 之间的几何一致性使得 Trip-Phz/SWCNT 复合材料能够自组装用于水性超级电容器。 Trip-Phz/SWCNT 复合材料在循环伏安图上显示出明确的氧化还原峰,并具有 410 F g -1的比电容。我们的研究更进一步,通过电子自旋共振(ESR)光谱捕获电化学诱导的自由基。理论上预测的内层 Trip-PhzH 6 3 ˙ +自由基和 SWCNT 之间强大的 π-π 相互作用促进了电子转移效应,导致 ESR 静默状态。相反,外层自由基的ESR谱具有戴森线,这归因于Trip-Phz/SWCNT复合材料的高电导率(∼10 2 S cm -1 )。从这项研究中获得的见解启发了先进储能设备的稳定有机/碳电极的设计。
更新日期:2024-08-27
down
wechat
bug