当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Thermodynamically stable low-Na O3 cathode materials driven by intrinsically high ionic potential discrepancy
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-08-22 , DOI: 10.1039/d4ee02359e Meng Li 1, 2 , Haoxiang Zhuo 3, 4 , Yang Xu 1, 5 , Qihang Jing 1, 2 , Yanlong Wu 3 , Yang Gu 1 , Zhou Liao 1, 6 , Kuan Wang 1 , Miao Song 7 , Xiaona Li 6 , Jianwen Liang 1 , Changtai Zhao 1 , Yingying Jiang 1 , Tianci Wu 2 , Dongsheng Geng 2, 8 , Jiangtao Hu 9 , Xueliang Sun 6 , Biwei Xiao 1, 3, 4
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-08-22 , DOI: 10.1039/d4ee02359e Meng Li 1, 2 , Haoxiang Zhuo 3, 4 , Yang Xu 1, 5 , Qihang Jing 1, 2 , Yanlong Wu 3 , Yang Gu 1 , Zhou Liao 1, 6 , Kuan Wang 1 , Miao Song 7 , Xiaona Li 6 , Jianwen Liang 1 , Changtai Zhao 1 , Yingying Jiang 1 , Tianci Wu 2 , Dongsheng Geng 2, 8 , Jiangtao Hu 9 , Xueliang Sun 6 , Biwei Xiao 1, 3, 4
Affiliation
The thermodynamically stable window for an O3-type layered sodium cathode material is largely determined by its Na stoichiometry; a spontaneous transition to the P-type structure occurs when it is relatively low. With such limitation, the capacity and stability of O3-structured materials become restricted and a potentially promising class of O3-type materials that garner the structural stability of P2-type materials is underexplored. This work discovers that a large ionic potential discrepancy within the transition metal layer acts as a driving force that pushes the Na-ions from prismatic coordination to octahedral coordination. Utilizing this strategy, we have explored a class of off-stoichiometric O3-type materials with exceptionally low Na-stoichiometry (generally forming P2-type structures with higher thermodynamic stability) yet having the structural parameter features of P-type materials. These materials demonstrate rapid O3–P3 phase transition while maintaining a stable solid solution reaction at high voltages, resulting in an impressive P-phase range of 81.4%, thus showing superior performance compared with conventional O3-type materials. This principle provides a great extension to the existing family of layered cathode materials for sodium-ion batteries.
中文翻译:
由本质上高离子势差驱动的热力学稳定的低Na O3阴极材料
O3型层状钠正极材料的热力学稳定窗口很大程度上取决于其Na化学计量;当它相对较低时,会自发转变为 P 型结构。由于这种限制,O3 结构材料的容量和稳定性受到限制,并且具有 P2 型材料结构稳定性的一类潜在有前途的 O3 型材料尚未得到充分探索。这项工作发现,过渡金属层内较大的离子电势差异充当驱动力,推动钠离子从棱柱配位转变为八面体配位。利用这一策略,我们探索了一类非化学计量的O3型材料,其具有极低的Na化学计量(通常形成具有更高热力学稳定性的P2型结构),同时具有P型材料的结构参数特征。这些材料表现出快速的 O3-P3 相变,同时在高电压下保持稳定的固溶反应,导致令人印象深刻的 81.4% 的 P 相范围,从而与传统的 O3 型材料相比表现出优越的性能。这一原理为现有的钠离子电池层状阴极材料系列提供了极大的扩展。
更新日期:2024-08-22
中文翻译:
由本质上高离子势差驱动的热力学稳定的低Na O3阴极材料
O3型层状钠正极材料的热力学稳定窗口很大程度上取决于其Na化学计量;当它相对较低时,会自发转变为 P 型结构。由于这种限制,O3 结构材料的容量和稳定性受到限制,并且具有 P2 型材料结构稳定性的一类潜在有前途的 O3 型材料尚未得到充分探索。这项工作发现,过渡金属层内较大的离子电势差异充当驱动力,推动钠离子从棱柱配位转变为八面体配位。利用这一策略,我们探索了一类非化学计量的O3型材料,其具有极低的Na化学计量(通常形成具有更高热力学稳定性的P2型结构),同时具有P型材料的结构参数特征。这些材料表现出快速的 O3-P3 相变,同时在高电压下保持稳定的固溶反应,导致令人印象深刻的 81.4% 的 P 相范围,从而与传统的 O3 型材料相比表现出优越的性能。这一原理为现有的钠离子电池层状阴极材料系列提供了极大的扩展。