当前位置:
X-MOL 学术
›
Arthritis Res. Ther.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Analysis of risk factors and development of a nomogram prediction model for renal tubular acidosis in primary Sjogren syndrome patients
Arthritis Research & Therapy ( IF 4.4 ) Pub Date : 2024-08-22 , DOI: 10.1186/s13075-024-03383-w Yanzhen Zeng 1 , Runzhi Liu 1 , Shuyi Li 1 , Jingwen Wei 1 , Fei Luo 1 , Yongkang Chen 1 , Dongmei Zhou 2
Arthritis Research & Therapy ( IF 4.4 ) Pub Date : 2024-08-22 , DOI: 10.1186/s13075-024-03383-w Yanzhen Zeng 1 , Runzhi Liu 1 , Shuyi Li 1 , Jingwen Wei 1 , Fei Luo 1 , Yongkang Chen 1 , Dongmei Zhou 2
Affiliation
To investigate the risk factors of renal tubular acidosis (RTA) in patients with primary Sjögren’s syndrome (pSS) and create a personalized nomogram for predicting pSS-RTA patients. Data from 99 pSS patients who underwent inpatient treatment at our hospital from January 2012 to January 2024 were retrospectively collected and analyzed. Bootstrap resampling technique, single-factor, and multi-factor logistic regression analyses were used to explore the risk factors for pSS-RTA. A nomogram was developed based on the results of the multivariate logistic model. The model was evaluated through receiver operating characteristic curve, C-index, calibration curve, and decision curve analysis. In addition, we graded the severity of pSS-RTA patients and used univariate analysis to assess the relationship between pSS-RTA severity and risk factors. A multivariate logistic regression analysis revealed that concurrent thyroid disease, long symptom duration, subjective dry mouth, and positive RF were independent risk factors for pSS-RTA patients. Based on them, a personalized nomogram predictive model was established. With a p-value of 0.657 from the Hosmer-Lemeshow test, the model demonstrated a good fit. The AUC values in the training and validation groups were 0.912 and 0.896, indicating a strong discriminative power of the nomogram. The calibration curves for the training and validation groups closely followed the diagonal line with a slope of 1, confirming the model’s reliable predictive ability. Furthermore, the decision curve analysis showed that the nomogram model had a net benefit in predicting pSS-RTA, emphasizing its clinical value.This study did not find an association between the severity of pSS-RTA and risk factors. We developed a nomogram to predict RTA occurrence in pSS patients, and it is believed to provide a foundation for early identification and intervention for high-risk pSS patients. • Having thyroid disease, experiencing prolonged symptoms, reporting subjective dry mouth, and testing positive for rheumatoid factor (RF) were independent risk factors for pSS-RTA patients. • According to the nomogram, the probability of pSS-RTA patients can be identified. • Multi-centre studies and the inclusion of more quantitative indicators may lead to better predictive models.
中文翻译:
原发性干燥综合征肾小管酸中毒的危险因素分析及列线图预测模型的建立
研究原发性干燥综合征 (pSS) 患者肾小管酸中毒 (RTA) 的危险因素,并创建用于预测 pSS-RTA 患者的个性化列线图。回顾性收集2012年1月至2024年1月在我院住院治疗的99例pSS患者的资料。采用Bootstrap重采样技术、单因素和多因素Logistic回归分析探讨pSS-RTA的危险因素。根据多元逻辑模型的结果开发了列线图。该模型通过受试者工作特征曲线、C 指数、校准曲线和决策曲线分析进行评估。此外,我们对 pSS-RTA 患者的严重程度进行了分级,并使用单变量分析来评估 pSS-RTA 严重程度与危险因素之间的关系。多因素Logistic回归分析显示,并发甲状腺疾病、症状持续时间长、主观口干和RF阳性是pSS-RTA患者的独立危险因素。在此基础上,建立了个性化列线图预测模型。 Hosmer-Lemeshow 检验的 p 值为 0.657,该模型表现出良好的拟合度。训练组和验证组的 AUC 值为 0.912 和 0.896,表明列线图具有很强的判别力。训练组和验证组的校准曲线紧随斜率为 1 的对角线,证实了模型的可靠预测能力。此外,决策曲线分析表明列线图模型在预测 pSS-RTA 方面具有净效益,强调了其临床价值。本研究未发现 pSS-RTA 的严重程度与危险因素之间存在关联。 我们开发了列线图来预测 pSS 患者 RTA 的发生,相信它为高危 pSS 患者的早期识别和干预提供了基础。 • 患有甲状腺疾病、经历长期症状、主观口干以及类风湿因子(RF) 检测呈阳性是pSS-RTA 患者的独立危险因素。 • 根据列线图,可以识别pSS-RTA患者的概率。 • 多中心研究和纳入更多定量指标可能会产生更好的预测模型。
更新日期:2024-08-22
中文翻译:
原发性干燥综合征肾小管酸中毒的危险因素分析及列线图预测模型的建立
研究原发性干燥综合征 (pSS) 患者肾小管酸中毒 (RTA) 的危险因素,并创建用于预测 pSS-RTA 患者的个性化列线图。回顾性收集2012年1月至2024年1月在我院住院治疗的99例pSS患者的资料。采用Bootstrap重采样技术、单因素和多因素Logistic回归分析探讨pSS-RTA的危险因素。根据多元逻辑模型的结果开发了列线图。该模型通过受试者工作特征曲线、C 指数、校准曲线和决策曲线分析进行评估。此外,我们对 pSS-RTA 患者的严重程度进行了分级,并使用单变量分析来评估 pSS-RTA 严重程度与危险因素之间的关系。多因素Logistic回归分析显示,并发甲状腺疾病、症状持续时间长、主观口干和RF阳性是pSS-RTA患者的独立危险因素。在此基础上,建立了个性化列线图预测模型。 Hosmer-Lemeshow 检验的 p 值为 0.657,该模型表现出良好的拟合度。训练组和验证组的 AUC 值为 0.912 和 0.896,表明列线图具有很强的判别力。训练组和验证组的校准曲线紧随斜率为 1 的对角线,证实了模型的可靠预测能力。此外,决策曲线分析表明列线图模型在预测 pSS-RTA 方面具有净效益,强调了其临床价值。本研究未发现 pSS-RTA 的严重程度与危险因素之间存在关联。 我们开发了列线图来预测 pSS 患者 RTA 的发生,相信它为高危 pSS 患者的早期识别和干预提供了基础。 • 患有甲状腺疾病、经历长期症状、主观口干以及类风湿因子(RF) 检测呈阳性是pSS-RTA 患者的独立危险因素。 • 根据列线图,可以识别pSS-RTA患者的概率。 • 多中心研究和纳入更多定量指标可能会产生更好的预测模型。