Nature ( IF 50.5 ) Pub Date : 2024-08-21 , DOI: 10.1038/s41586-024-07826-x Haoning Tang 1 , Yiting Wang 1 , Xueqi Ni 1 , Kenji Watanabe 2 , Takashi Taniguchi 2 , Pablo Jarillo-Herrero 3 , Shanhui Fan 4 , Eric Mazur 1 , Amir Yacoby 5 , Yuan Cao 5, 6, 7
Two-dimensional materials (2DM) and their heterostructures offer tunable electrical and optical properties, primarily modifiable through electrostatic gating and twisting. Although electrostatic gating is a well-established method for manipulating 2DM, achieving real-time control over interfacial properties remains challenging in exploring 2DM physics and advanced quantum device technology1,2,3,4,5,6. Current methods, often reliant on scanning microscopes, are limited in their scope of application, lacking the accessibility and scalability of electrostatic gating at the device level. Here we introduce an on-chip platform for 2DM with in situ adjustable interfacial properties, using a microelectromechanical system (MEMS). This platform comprises compact and cost-effective devices with the ability of precise voltage-controlled manipulation of 2DM, including approaching, twisting and pressurizing actions. We demonstrate this technology by creating synthetic topological singularities, such as merons, in the nonlinear optical susceptibility of twisted hexagonal boron nitride (h-BN)7,8,9,10. A key application of this technology is the development of integrated light sources with real-time and wide-range tunable polarization. Furthermore, we predict a quantum analogue that can generate entangled photon pairs with adjustable entanglement properties. Our work extends the abilities of existing technologies in manipulating low-dimensional quantum materials and paves the way for new hybrid two- and three-dimensional devices, with promising implications in condensed-matter physics, quantum optics and related fields.
中文翻译:
二维材料片上多自由度控制
二维材料 (2DM) 及其异质结构提供可调的电学和光学特性,主要可通过静电门控和扭曲进行修改。尽管静电门控是操纵 2DM 的成熟方法,但在探索 2DM 物理和先进量子器件技术1,2,3,4,5,6 过程中实现界面特性的实时控制仍然具有挑战性。目前的方法通常依赖于扫描显微镜,其应用范围受到限制,缺乏设备级静电门控的可访问性和可扩展性。在这里,我们介绍了一种使用微机电系统 (MEMS) 的 2DM 片上平台,具有原位可调界面特性。该平台由紧凑且经济高效的设备组成,能够对 2DM 进行精确的电压控制操作,包括接近、扭转和加压动作。我们通过在扭曲六方氮化硼 (h-BN) 7,8,9,10的非线性光学磁化率中创建合成拓扑奇点(例如 meron)来演示这项技术。该技术的一个关键应用是开发具有实时、宽范围可调偏振的集成光源。此外,我们预测了一种量子类似物,可以生成具有可调节纠缠特性的纠缠光子对。我们的工作扩展了现有技术在操纵低维量子材料方面的能力,并为新型混合二维和三维器件铺平了道路,在凝聚态物理、量子光学和相关领域具有广阔的前景。