当前位置:
X-MOL 学术
›
Macromolecules
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Modulating the Contact Angle between Nonpolar Polymers and SiO2 Nanoparticles
Macromolecules ( IF 5.1 ) Pub Date : 2024-08-20 , DOI: 10.1021/acs.macromol.4c00823 Anirban Majumder 1 , Anne N. Radzanowski 2 , Ching-Yu Wang 1 , Yijiang Mu 1 , E. Bryan Coughlin 2 , Raymond J. Gorte 1 , John M. Vohs 1 , Daeyeon Lee 1
Macromolecules ( IF 5.1 ) Pub Date : 2024-08-20 , DOI: 10.1021/acs.macromol.4c00823 Anirban Majumder 1 , Anne N. Radzanowski 2 , Ching-Yu Wang 1 , Yijiang Mu 1 , E. Bryan Coughlin 2 , Raymond J. Gorte 1 , John M. Vohs 1 , Daeyeon Lee 1
Affiliation
Polymer–nanoparticle interactions play an important role in determining the morphology and properties of polymer nanocomposites and controlling the polymeric reactions involving heterogeneous catalysts. Here, we modulate the interactions between nonpolar polymers and nanoparticles by modifying the nanoparticle surface chemistry and quantify the interaction strength through direct contact angle measurements. We investigate the interactions of three nonpolar polymers, polystyrene, polyethylene, and polycyclooctene, with silica nanoparticles whose surface chemistry has been modified by atomic layer deposition of titania and calcium carbonate and by alkyl silanization. Significant differences in polymer–nanoparticle interactions are observed, which can be attributed to differences in the polarizability of the polymers and oxide surface composition. Compared to fully hydrogenated polycyclooctene, polycyclooctene is shown to have stronger interactions with most metal oxides; however, this trend is reversed following alkyl silanization of the silica nanoparticles, which makes the surface of the particles less polar. These differences in interactions can be leveraged to make polymer nanocomposites with unique properties and enable the selective conversion of polymers without the need for separations.
中文翻译:
调节非极性聚合物和 SiO2 纳米粒子之间的接触角
聚合物-纳米颗粒相互作用在确定聚合物纳米复合材料的形态和性能以及控制涉及多相催化剂的聚合反应方面发挥着重要作用。在这里,我们通过修改纳米颗粒表面化学来调节非极性聚合物和纳米颗粒之间的相互作用,并通过直接接触角测量来量化相互作用强度。我们研究了三种非极性聚合物(聚苯乙烯、聚乙烯和聚环辛烯)与二氧化硅纳米粒子的相互作用,二氧化硅纳米粒子的表面化学性质已通过二氧化钛和碳酸钙的原子层沉积以及烷基硅烷化进行了改性。观察到聚合物-纳米粒子相互作用的显着差异,这可归因于聚合物的极化率和氧化物表面组成的差异。与完全氢化的聚环辛烯相比,聚环辛烯与大多数金属氧化物具有更强的相互作用;然而,这种趋势在二氧化硅纳米颗粒的烷基硅烷化后发生逆转,这使得颗粒表面的极性降低。可以利用这些相互作用的差异来制造具有独特性能的聚合物纳米复合材料,并能够在不需要分离的情况下选择性地转化聚合物。
更新日期:2024-08-20
中文翻译:
调节非极性聚合物和 SiO2 纳米粒子之间的接触角
聚合物-纳米颗粒相互作用在确定聚合物纳米复合材料的形态和性能以及控制涉及多相催化剂的聚合反应方面发挥着重要作用。在这里,我们通过修改纳米颗粒表面化学来调节非极性聚合物和纳米颗粒之间的相互作用,并通过直接接触角测量来量化相互作用强度。我们研究了三种非极性聚合物(聚苯乙烯、聚乙烯和聚环辛烯)与二氧化硅纳米粒子的相互作用,二氧化硅纳米粒子的表面化学性质已通过二氧化钛和碳酸钙的原子层沉积以及烷基硅烷化进行了改性。观察到聚合物-纳米粒子相互作用的显着差异,这可归因于聚合物的极化率和氧化物表面组成的差异。与完全氢化的聚环辛烯相比,聚环辛烯与大多数金属氧化物具有更强的相互作用;然而,这种趋势在二氧化硅纳米颗粒的烷基硅烷化后发生逆转,这使得颗粒表面的极性降低。可以利用这些相互作用的差异来制造具有独特性能的聚合物纳米复合材料,并能够在不需要分离的情况下选择性地转化聚合物。