当前位置: X-MOL 学术Glob. Change Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Environment and microbiome drive different microbial traits and functions in the macroscale soil organic carbon cycle
Global Change Biology ( IF 10.8 ) Pub Date : 2024-08-20 , DOI: 10.1111/gcb.17465
Daniel Wasner 1 , Joerg Schnecker 2 , Xingguo Han 3 , Yifei Sun 4 , Aline Frossard 3 , Erick Zagal Venegas 5 , Pascal Boeckx 6 , Sebastian Doetterl 1
Affiliation  

Soil microbial traits and functions play a central role in soil organic carbon (SOC) dynamics. However, at the macroscale (regional to global) it is still unresolved whether (i) specific environmental attributes (e.g., climate, geology, soil types) or (ii) microbial community composition drive key microbial traits and functions directly. To address this knowledge gap, we used 33 grassland topsoils (0–10 cm) from a geoclimatic gradient in Chile. First, we incubated the soils for 1 week in favorable standardized conditions and quantified a wide range of soil microbial traits and functions such as microbial biomass carbon (MBC), enzyme kinetics, microbial respiration, growth rates as well as carbon use efficiency (CUE). Second, we characterized climatic and physicochemical properties as well as bacterial and fungal community composition of the soils. We then applied regression analysis to investigate how strongly the measured microbial traits and functions were linked with the environmental setting versus microbial community composition. We show that environmental attributes (predominantly the amount of soil organic matter) determined patterns of MBC along the gradient, which in turn explained microbial respiration and growth rates. However, respiration and growth normalized for MBC (i.e., specific respiration and growth) were more linked to microbial community composition than environmental attributes. Notably, both specific respiration and growth followed distinct trends and were related to different parts of the microbial community, which in turn resulted in strong effects on microbial CUE. We conclude that even at the macroscale, CUE is the result of physiologically decoupled aspects of microbial metabolism, which in turn is partially determined by microbial community composition. The environmental setting and microbial community composition affect different microbial traits and functions, and therefore both factors need to be considered in the context of macroscale SOC dynamics.

中文翻译:


环境和微生物组驱动宏观土壤有机碳循环中不同的微生物特征和功能



土壤微生物性状和功能在土壤有机碳(SOC)动态中发挥着核心作用。然而,在宏观尺度(区域到全球)上,(i)特定环境属性(例如气候、地质、土壤类型)或(ii)微生物群落组成是否直接驱动关键微生物特征和功能仍然悬而未决。为了解决这一知识差距,我们使用了来自智利地理气候梯度的 33 块草原表土(0-10 厘米)。首先,我们在有利的标准化条件下将土壤培养 1 周,并量化了各种土壤微生物特征和功能,例如微生物生物量碳 (MBC)、酶动力学、微生物呼吸、生长速率以及碳利用效率 (CUE) 。其次,我们描述了土壤的气候和理化特性以及细菌和真菌群落组成。然后,我们应用回归分析来研究测量的微生物特征和功能与环境设置和微生物群落组成的关联程度。我们发现环境属性(主要是土壤有机质的量)决定了 MBC 沿梯度的模式,这反过来又解释了微生物的呼吸和生长速率。然而,MBC 标准化的呼吸和生长(即比呼吸和生长)与微生物群落组成的相关性大于环境属性。值得注意的是,比呼吸和生长都遵循不同的趋势,并且与微生物群落的不同部分相关,这反过来又对微生物 CUE 产生强烈影响。 我们得出的结论是,即使在宏观尺度上,CUE 也是微生物代谢生理上脱钩的结果,而微生物代谢又部分取决于微生物群落的组成。环境环境和微生物群落组成会影响不同的微生物特征和功能,因此需要在宏观 SOC 动态背景下考虑这两个因素。
更新日期:2024-08-21
down
wechat
bug