当前位置: X-MOL 学术ACS Sens. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Continuous Biosensor Based on Particle Motion: How Does the Concentration Measurement Precision Depend on Time Scale?
ACS Sensors ( IF 8.2 ) Pub Date : 2024-08-21 , DOI: 10.1021/acssensors.4c01586
Rafiq M Lubken 1 , Yu-Ting Lin 1 , Stijn R R Haenen 1 , Max H Bergkamp 1 , Junhong Yan 1 , Paul A Nommensen 2 , Menno W J Prins 1, 3, 4, 5
Affiliation  

Continuous biosensors measure concentration–time profiles of biomolecular substances in order to allow for comparisons of measurement data over long periods of time. To make meaningful comparisons of time-dependent data, it is essential to understand how measurement imprecision depends on the time interval between two evaluation points, as the applicable imprecision determines the significance of measured concentration differences. Here, we define a set of measurement imprecisions that relate to different sources of variation and different time scales, ranging from minutes to weeks, and study these using statistical analyses of measurement data. The methodology is exemplified for Biosensing by Particle Motion (BPM), a continuous, affinity-based sensing technology with single-particle and single-molecule resolution. The studied BPM sensor measures specific small molecules (glycoalkaloids) in an industrial food matrix (potato fruit juice). Measurements were performed over several months at two different locations, on nearly 50 sensor cartridges with in total more than 1000 fluid injections. Statistical analyses of the measured signals and concentrations show that the relative residuals are normally distributed, allowing extraction and comparisons of the proposed imprecision parameters. The results indicate that sensor noise is the most important source of variation followed by sample pretreatment. Variations caused by fluidic transport, changes of the sensor during use (drift), and variations due to different sensor cartridges and cartridge replacements appear to be small. The imprecision due to sensor noise is recorded over few-minute time scales and is attributed to stochastic fluctuations of the single-molecule measurement principle, false-positive signals in the signal processing, and nonspecific interactions. The developed methodology elucidates both time-dependent and time-independent factors in the measurement imprecision, providing essential knowledge for interpreting concentration–time profiles as well as for further development of continuous biosensing technologies.

中文翻译:


基于粒子运动的连续生物传感器:浓度测量精度如何取决于时间尺度?



连续生物传感器测量生物分子物质的浓度-时间曲线,以便对长时间内的测量数据进行比较。为了对时间相关数据进行有意义的比较,必须了解测量不精确度如何取决于两个评估点之间的时间间隔,因为适用的不精确度决定了测量浓度差异的显着性。在这里,我们定义了一组与不同变化源和不同时间尺度(从几分钟到几周)相关的测量不精确性,并使用测量数据的统计分析来研究这些不精确性。该方法以粒子运动生物传感 (BPM) 为例,这是一种基于亲和力的连续传感技术,具有单颗粒和单分子分辨率。所研究的 BPM 传感器可测量工业食品基质(马铃薯果汁)中的特定小分子(配糖生物碱)。我们在两个不同地点对近 50 个传感器盒进行了数月的测量,总共注入了 1000 多次液体。对测量信号和浓度的统计分析表明,相对残差呈正态分布,允许提取和比较所提出的不精确参数。结果表明,传感器噪声是最重要的变异来源,其次是样品预处理。由流体传输、传感器在使用过程中的变化(漂移)引起的变化以及由于不同的传感器盒和盒更换引起的变化似乎很小。 由于传感器噪声导致的不精确性是在几分钟的时间尺度内记录的,并且归因于单分子测量原理的随机波动、信号处理中的假阳性信号以及非特异性相互作用。所开发的方法阐明了测量不精确性中的时间依赖性和时间无关因素,为解释浓度-时间曲线以及连续生物传感技术的进一步发展提供了必要的知识。
更新日期:2024-08-21
down
wechat
bug