当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Interfacial engineering with trivalent cations for efficient and stable inverted inorganic perovskite solar cells
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-08-20 , DOI: 10.1039/d4ee02486a Zezhang Wang 1 , Tianfei Xu 1 , Nan Li 1 , Yali Liu 1 , Kun Li 1 , Zihao Fan 1 , Jieke Tan 1 , Dehong Chen 2 , Shengzhong Liu 1, 3, 4 , Wanchun Xiang 1
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-08-20 , DOI: 10.1039/d4ee02486a Zezhang Wang 1 , Tianfei Xu 1 , Nan Li 1 , Yali Liu 1 , Kun Li 1 , Zihao Fan 1 , Jieke Tan 1 , Dehong Chen 2 , Shengzhong Liu 1, 3, 4 , Wanchun Xiang 1
Affiliation
Metal halide inorganic perovskites with excellent thermal stability and ideal bandgaps are suitable for constructing inverted-top subcells for tandem devices. However, factors such as defect-induced nonradiative recombination, interfacial energy level mismatch, and halide ion migration hinder the further development of high-performance inorganic perovskite solar cells (PSCs). Herein, we use trivalent cation ytterbium (Yb3+) as a modifier for post-treatment of inorganic perovskite surfaces to fabricate highly efficient and stable inorganic PSCs. The incorporation of Yb3+ is found to alleviate strain tension on the perovskite surface region. On the one hand, Yb3+ ions assist in forming a back-surface electric field, aligning energy levels and suppressing non-radiative recombination of carriers; on the other hand, Yb3+ ions strongly interact with iodide, which reduces interfacial defects and prohibits iodide migration. Ultimately, the efficiency of the inverted CsPbI3−xBrx inorganic PSCs is enhanced from 19.3% to 21.4%, with the open-circuit voltage increasing from 1.151 V to 1.256 V. Impressively, the Yb3+-treated PSCs show excellent ambient and operational stabilities, by exhibiting only 10% degradation for 1260 h under maximum power point tracking and continuous one-sun irradiation. This work emphasizes the importance of interfacial engineering using high-valence cations for improving the performance of inverted inorganic PSCs.
中文翻译:
三价阳离子界面工程用于高效稳定的倒置无机钙钛矿太阳能电池
金属卤化物无机钙钛矿具有优异的热稳定性和理想的带隙,适合构建串联器件的倒顶子电池。然而,缺陷引起的非辐射复合、界面能级失配和卤化物离子迁移等因素阻碍了高性能无机钙钛矿太阳能电池(PSC)的进一步发展。在此,我们使用三价阳离子镱(Yb 3+ )作为改性剂对无机钙钛矿表面进行后处理,以制造高效且稳定的无机PSC。发现 Yb 3+的掺入可以减轻钙钛矿表面区域的应变张力。一方面,Yb 3+离子有助于形成背面电场,调整能级并抑制载流子的非辐射复合。另一方面,Yb 3+离子与碘化物强烈相互作用,从而减少界面缺陷并阻止碘化物迁移。最终,倒置 CsPbI 3− x Br x无机 PSC 的效率从 19.3% 提高到 21.4%,开路电压从 1.151 V 增加到 1.256 V。令人印象深刻的是,经 Yb 3+处理的 PSC 显示出优异的环境性能和运行稳定性,在最大功率点跟踪和连续单太阳照射下,1260 小时内仅表现出 10% 的退化。这项工作强调了使用高价阳离子进行界面工程以提高反相无机 PSC 性能的重要性。
更新日期:2024-08-20
中文翻译:
三价阳离子界面工程用于高效稳定的倒置无机钙钛矿太阳能电池
金属卤化物无机钙钛矿具有优异的热稳定性和理想的带隙,适合构建串联器件的倒顶子电池。然而,缺陷引起的非辐射复合、界面能级失配和卤化物离子迁移等因素阻碍了高性能无机钙钛矿太阳能电池(PSC)的进一步发展。在此,我们使用三价阳离子镱(Yb 3+ )作为改性剂对无机钙钛矿表面进行后处理,以制造高效且稳定的无机PSC。发现 Yb 3+的掺入可以减轻钙钛矿表面区域的应变张力。一方面,Yb 3+离子有助于形成背面电场,调整能级并抑制载流子的非辐射复合。另一方面,Yb 3+离子与碘化物强烈相互作用,从而减少界面缺陷并阻止碘化物迁移。最终,倒置 CsPbI 3− x Br x无机 PSC 的效率从 19.3% 提高到 21.4%,开路电压从 1.151 V 增加到 1.256 V。令人印象深刻的是,经 Yb 3+处理的 PSC 显示出优异的环境性能和运行稳定性,在最大功率点跟踪和连续单太阳照射下,1260 小时内仅表现出 10% 的退化。这项工作强调了使用高价阳离子进行界面工程以提高反相无机 PSC 性能的重要性。