当前位置:
X-MOL 学术
›
Quantum Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Photonic variational quantum eigensolver using entanglement measurements
Quantum Science and Technology ( IF 5.6 ) Pub Date : 2024-08-21 , DOI: 10.1088/2058-9565/ad6d87 Jinil Lee , Wooyeong Song , Donghwa Lee , Yosep Kim , Seung-Woo Lee , Hyang-Tag Lim , Hojoong Jung , Sang-Wook Han , Yong-Su Kim
Quantum Science and Technology ( IF 5.6 ) Pub Date : 2024-08-21 , DOI: 10.1088/2058-9565/ad6d87 Jinil Lee , Wooyeong Song , Donghwa Lee , Yosep Kim , Seung-Woo Lee , Hyang-Tag Lim , Hojoong Jung , Sang-Wook Han , Yong-Su Kim
Variational quantum eigensolver (VQE), which combines quantum systems with classical computational power, has been arisen as a promising candidate for near-term quantum computing applications. However, the experimental resources such as the number of measurements to implement VQE rapidly increases as the Hamiltonian problem size grows. Applying entanglement measurements to reduce the number of measurement setups has been proposed to address this issue, but, entanglement measurements themselves can introduce additional resource demands. Here, we apply entanglement measurements to the photonic VQE utilizing polarization and path degrees of freedom of a single-photon. In our photonic VQE, entanglement measurements can be deterministically implemented using linear optics, so it takes full advantage of introducing entanglement measurements without additional experimental demands. Moreover, we show that such a setup can mitigate errors in measurement apparatus for a certain Hamiltonian.
中文翻译:
使用纠缠测量的光子变分量子本征求解器
变分量子本征求解器(VQE)将量子系统与经典计算能力相结合,已成为近期量子计算应用的有希望的候选者。然而,随着哈密顿问题规模的增长,实验资源(例如实现 VQE 的测量数量)迅速增加。已经提出应用纠缠测量来减少测量设置的数量来解决这个问题,但是,纠缠测量本身可能会带来额外的资源需求。在这里,我们利用单光子的偏振和路径自由度将纠缠测量应用于光子 VQE。在我们的光子 VQE 中,可以使用线性光学确定性地实现纠缠测量,因此它充分利用了引入纠缠测量的优势,而无需额外的实验需求。此外,我们表明这样的设置可以减轻测量设备中特定哈密顿量的误差。
更新日期:2024-08-21
中文翻译:
使用纠缠测量的光子变分量子本征求解器
变分量子本征求解器(VQE)将量子系统与经典计算能力相结合,已成为近期量子计算应用的有希望的候选者。然而,随着哈密顿问题规模的增长,实验资源(例如实现 VQE 的测量数量)迅速增加。已经提出应用纠缠测量来减少测量设置的数量来解决这个问题,但是,纠缠测量本身可能会带来额外的资源需求。在这里,我们利用单光子的偏振和路径自由度将纠缠测量应用于光子 VQE。在我们的光子 VQE 中,可以使用线性光学确定性地实现纠缠测量,因此它充分利用了引入纠缠测量的优势,而无需额外的实验需求。此外,我们表明这样的设置可以减轻测量设备中特定哈密顿量的误差。